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Abstract - Cardiovascular waves result from the interaction of the heart with the arterial system and carry significant diagnostic value, 

often unexploited to its fullest possible degree. The purpose of this work is to create an accurate and robust direct quasi 1D 

computational model simulating the entire cardiovascular network of an arbitrary topology. This model has a potential to extract 

information on cardiovascular quantities of interest, for which the direct measurements are not feasible, such as a cardiac output, blood 

pressure along all arteries of interest, including central aortic pressure, other. Viscoelastic properties of arterial blood vessels of a 

variable cross section area are formulated based on a Voight linear model. The results are compared with the in-vitro experimental data, 

replicating the 55 and 37 largest conduit arteries in the human systemic circulation.  The presence of viscoelastic properties affects 

dispersive and dissipative properties of a numerical finite volume scheme, improving results based on a pure linear elastic arterial wall 

model.  
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Nomenclature 

𝐴 (𝑚2) Luminal cross sectional area in a loaded condition 

𝐴0 (𝑚2) Luminal cross sectional area in a load free condition 

𝑐𝑀𝐾 (m/s) Moens-Korteweg speed of propagation based on a load free cross sectional area 

E (Pa) Wall linear elastic modulus 

𝐸̅
= 𝐸 (1 − 𝜈2)⁄  

(Pa) Reduced wall linear elastic modulus 

p (Pa) Blood pressure 

𝑟0 (m) Radius of a luminal cross sectional area in a load free condition 

u (m/s) Axial velocity averaged across the section 

Γ (Pa*s) Viscosity constant of a visco-elastic Kelvin-Voight model 

μ (Pa*s) Blood dynamic viscosity 

ν  Poisson coefficient 

η  Ratio of a normal displacement to 𝑟0 

Δt (s) Time step of a numerical approximation 

Δ𝑥 (m) Mesh spacing of a numerical approximation 

 

1. Introduction 
In the last two decades cardiovascular mathematics, mechanics and numerical modeling have experienced a dramatic 

advancement. This trend is motivated by the recognized capability of a computational modeling to expand our 

understanding of physiological and pathological processes, to predict the consequences of surgical intervention, and to 

assist in surgical planning relating to individual patients. It complements the information obtained by medical imaging or 

other non-invasive measurements, allowing eventually to predict cardiovascular markers in the areas for which the direct 

assessment is not feasible. For the detailed literature review on different methods of a cardiovascular modelling and 

applications the reader is referred to [1–2]. The large scale of a pulse propagating waveform compared to the cross 

sectional diameter of the vessel significantly reduces the number of parameters required to simulate the fully 3D problems 
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(long-wave approximation).  A brief review on application of cardiovascular mathematics to solutions of inverse problem 

can be found in [3].  

The current work is an extension of the authors’ investigations in areas of direct and inverse problems [4-6]. We 

present here a finite volume based nonlinear quasi-1D algorithm, with an account for viscoelasticity in tapered vessels of a 

well-defined experimental model [7]. 

 

2. Methods 
2.1. Mathematical Model 

Consider the conservation of mass and momentum averaged over cross section to form a 1D system of equations; 

This is applied to the Newtonian fluid with a constant axisymmetric velocity profile in a visco-elastic tube and a 

variable cross section area (dot above indicates time derivative, prime – derivative by the axial coordinate) 

 

𝑄̇ + [𝐹(𝑄)]′ = 𝑓 
 

(1) 

where 

 

𝑄 = [
𝐴
𝑢

] ;    𝐹 = [
𝐴𝑢

𝑢2

2
+

𝑝

𝜌

] ;       𝑓 = [
0

𝑘𝑢

𝐴0

] ;       𝑘 = −
22𝜇𝜋

𝜌
; 

 
The Voight type constitutive equation for the circumferential stress component reads 

 

𝜎 = 𝐸̅𝜂 + Γ𝜂̇ (2) 

 

Combining (2) with the equilibrium condition    𝜎 = 𝑝𝑟0/ℎ, arrive at the expression for the visco-elastic alternative of 

a tube law 

 

𝑝 =
ℎ

𝑟0
(𝐸̅𝜂 + Γ𝜂̇) = 2𝜌𝑐𝑚𝑘 

2 (𝜂 + β𝜂̇);     𝑐𝑚𝑘 
2 =

𝐸̅ℎ

2𝜌𝑟0
;        𝛽 =

Γ

𝐸̅
 (3) 

                      

In terms of cross section areas (  𝐴 = 𝐴0(1 + 𝜂)2,    𝜂 = √
𝐴

𝐴0
− 1 ), the tube law is presented as the superposition of a 

an elastic 𝑝𝑒 and viscous 𝑝𝑣 components 

 

𝑝 = 𝑝𝑒 − 𝑝𝑣;           𝑝𝑒 = 2𝜌𝑐𝑚𝑘 
2 (√

𝐴

𝐴0
− 1) ;            𝑝𝑣 =  

𝛽𝜌𝑐𝑚𝑘 
2

 2√𝐴𝐴0
(𝑢𝐴)′   (4) 

 

In the following, the alternative form of conservation laws (1) will be used. In this form, the flux vector is presented as 

a function of a pure elastic component, whereas the viscous response is modelled by the source term          

 

𝐹 = [

𝐴𝑢
𝑢2

2
+

𝑝𝑒

𝜌
] ;       𝑓 = [

0
𝑘𝑢

𝐴0
+

𝑝𝑣
′

𝜌
] ;       (5) 

 

The problem given in (1), (5) is solved by the classical Lax-Wendroff scheme of the second order of accuracy in time 

and space. The derivation here slightly differs from the traditional approach, due to the employment of a Voight’s viscous-

elastic model in a form operating with a space derivative, which affects the numerical differentiation stencil. 

From (1) it follows for the n
th
 node of a stencil  
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𝑄̇𝑛 = f𝑛 − [𝐹(𝑄)]′ 
 

𝑄̈𝑛 = f𝑛,𝑛−1𝑄̇𝑛−1 + f𝑛,𝑛𝑄̇𝑛 + f𝑛,𝑛+1𝑄̇𝑛+1 + [𝐹𝑄𝑄̇]
𝑛

′
    

 

 

(6) 

 

where we have denoted 𝐹𝑄 =
𝜕𝐹

𝜕𝑄
;      f𝑛,𝑘 =

𝜕𝑓𝑛

𝜕𝑄𝑘
, 𝑘 = 𝑛 − 1, 𝑛, 𝑛 + 1.   We now consider the Taylor series expansion 

truncated at the second order to yield solution at the following time level  

 

𝑄𝑛 = 𝑄𝑛 + 𝜏𝑄̇𝑛(1 +
𝜏

2
f𝑛,𝑛) +

𝜏2

2
(f𝑛,𝑛−1𝑄̇𝑛−1 + f𝑛,𝑛+1𝑄̇𝑛+1 + [𝐹𝑄𝑄̇]

𝑛

′
) (7) 

 
where the superscript and subscript show the following and the current time levels, relating to the specified node 

number. The first order time derivatives in (7) are replaced with the space coordinate differentiation according to the first 

equation (6). The stability criteria for the Lax-Wendroff scheme is 

 

𝐶𝐹𝐿 =
𝜏(𝑢 + 𝑐𝑀𝐾)𝑚𝑎𝑥

Δ𝑥
≤ 1 (8) 

  
All simulation runs are assuming tapered cross sections for the arteries, and a 2666 kPa external pressure. The 

solution is for 10 cycles, and until a periodic solution is achieved.  

 

2.2. Boundary Conditions 
Whereas specification of initial conditions does not affect the final solution of a pulsatile flow, correct setting of the 

boundary conditions should comply with the characteristic properties of a relating mathematical model.  To complete the 

problem consider the Jacobian matrix 𝐹𝑄 

 

𝐹𝑄 =
𝜕𝐹

𝜕𝑄
= [

𝑢 𝐴
𝜌𝑐𝑀𝐾

2

√𝐴𝐴0

𝑢]     (9) 

 

It may be shown that the forward and backward traveling characteristic (Riemann) variables are determined as the 

following 

 

𝑌 = 𝑢 + 4𝑐𝑀𝐾 (
𝐴

𝐴0
)

1/4

;     𝑍 = 𝑢 − 4𝑐𝑀𝐾 (
𝐴

𝐴0
)

1/4

;     (10) 

 

The local speed wave of each characteristic variable is  𝜆𝑌 = 𝑢 + 𝑐𝑀𝐾 (
𝐴

𝐴0
)

1/4
,    𝜆𝑍 = 𝑢 − 𝑐𝑀𝐾 (

𝐴

𝐴0
)

1/4
. Since the 

local Moens-Korteweg speed is significantly larger than the convective velocity, the flow is deeply subcritical. In case of 

large arteries, in which the convective phenomena is dominant, the specified inlet and exit boundary conditions are 

complemented by the  backward and forward propagating invariants respectfully, preserving their constant values on 

relating characteristic lines. 

 

2.2.1. Inflow Boundary Conditions 
With accounts for the flow at the inlet of ascending aorta, we enforce a time dependent flow rate 𝑄0(𝑡). As a result the 

following system of equations is solved at every time step with respect to the inlet velocity 𝑢𝑖𝑛 and inlet cross section area 

𝐴𝑖𝑛, 
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𝑢𝑖𝑛𝐴𝑖𝑛 = 𝑄0(𝑡) 

𝑢𝑖𝑛 − 4 [𝑐𝑀𝐾 (
𝐴

𝐴0
)

1
4

]

𝑖𝑛

= 𝑍1 
(11) 

 

where 𝑍1 is the backward propagating invariant calculated at the first cell n=1. 

 

2.2.2. Terminal Boundary Conditions 
Since 1-D model assumptions are not valid for the small arteries, arterioles and capillaries, the terminal conditions are 

usually specified for the truncated model, construed by a reasonable number of arterial tree generations. Commonly used a 

three element Windkessel model [ 1, 2 ] accounts for the cumulative effects of the distal vessels beyond the terminal site, 

introducing proximal and distal resistances 𝑅1, 𝑅2, and a compliance of the vascular bed 𝐶𝑇 . This model relates time 

dependent pressure and flow at the truncated section, being expressed in differential  form, as shown by the 1
st
 equation of 

(12). The terminal condition is complemented by the forward propagating invariant 𝑌𝑁, calculated at the last cell, 𝑛 = 𝑁 

  

(𝑢𝐴̇)
𝑇

= [
𝑝̇𝑒

𝑅1
+

𝑝𝑒

𝑅1𝑅2𝐶𝑇
− (1 +

𝑅1

𝑅2
)

𝑢𝐴

𝑅1𝐶𝑇
]

𝑇

 

 

𝑢𝑇 + 4 [𝑐𝑀𝐾 (
𝐴

𝐴0
)

1
4

]

𝑇

= 𝑌𝑁 

(12) 

 

where subscript “T” indicates terminal conditions. 

 

2.2.3. Arterial Bifurcation  
Splitting flow junctions are the typical alignments in arterial systems. The parent vessel designated as the vessel 1 

(Fig. 1) connects by its outlet to the inlets of the daughter tubes, noted as vessels 2 and 3. Let 𝑈1, 𝑃1 𝐴1  indicate velocity, 

pressure and cross section area of a parent vessel at the junction interface, 𝑈2, 𝑃2 𝐴2, 𝑈3, 𝑃3 𝐴3 – the corresponding  

properties of daughters’ vessels at the interface (Fig.1). The following assumptions are made to simplify the junction 

matching procedure: (1) energy losses at the junctions are ignored, (2) pressure change across the junction is neglected, 

𝑃1 = 𝑃2 = 𝑃3 = 𝑃. Since the pressure values algebraically relate to the cross section areas (4), the only four independent 

quantities 𝑈1, 𝑈2, 𝑈3, 𝑃 need to be specified. To close the problem the conservation of mass and extrapolation of forward 

and backward propagating invariants present 

 

 
Fig. 1: Arterial bifurcation. Notation. 

 

 



 

156-5 

𝑈1𝐴1=𝑈2𝐴2+𝑈3𝐴3 

 

𝑈1 + 4 [𝑐𝑀𝐾 (
𝐴

𝐴0
)

1
4

]

1

= 𝑌1 

𝑈2 − 4 [𝑐𝑀𝐾 (
𝐴

𝐴0
)

1
4

]

2

= 𝑍2 

𝑈3 − 4 [𝑐𝑀𝐾 (
𝐴

𝐴0
)

1
4

]

3

= 𝑍3 

 

(13) 

where 𝑌1, 𝑍2, 𝑍3 are characteristic variables calculated at the last cell of a parent vessel and the first cell of the daughters 

vessels  (Fig.1). 

 

3. Applications 
3.1. Model of the 55 Main Systemic Human Arteries 

The 55 arteries of the in vitro experimental model from [7] are simulated within the nonlinear formulation frame. Each 

arterial domain is characterized by its length, cross sectional area, Moens-Korteweg (acoustic) speed of propagation, and a 

linear elastic modulus. Flow is a laminar Newtonian liquid formed by a mixture of 70% water and 30% of glycerine. The 

pulse duplicator system was operating at 60 beats/min, producing a cardiac output of 4.1 l/min. At each terminal branch the 

simplest no-reflected boundary conditions have been specified. The pressure and velocity waveforms are presented in 

Figure 2. Convergence for the vascular tree was achieved in a minute, using PC with a dual core 2.4 Hz i5 Intel processor. 

To verify results across measured data each truncated vessel should be assigned to the three element Windkessel model.  

 

 
Fig. 2: Pressure and flow rate time histories in the middle points of selected arteries, validation and flow inlet from Segers and 

Alastruey et al. [8-9]). 
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Fig. 2 compares pressure and flow rate time histories at different locations along the ascending, thoracic and 

abdominal aorta obtained with the experimental and numerical models once a periodic solution has been achieved. The 

values of the mean pressure along the aorta are well predicted by the 1-D method, with relative error below 2%. The 

simulation approximates well the slope of the diastolic decay, and waveforms of pressure and flow rate distributions. Time 

history of the flow rate approximates well in proximity of the peak flow, whereas low level of flow deviates from 

experiment at some time instants by 20%. This study increases the confidence in the 1D code and its ability to model 

clinically relevant problems, such as applications presented in this proposal. 

 
3.2. Addition of Vessel Wall Viscoelasticity 

A model of the 37 main arteries, as presented both numerically and experimentally by Matthys et al. [10], is simulated 

and solved with our in-house algorithm. Matthys et al., hypothesized that viscoelastic properties of blood vessels may 

affect the predicted blood pressure and flow rate as a function of time, and improve the accuracy. Here we set the 

viscoelastic properties using the measurements presented in Alastruey et al. [11], in which they experimentally measure the 

wall viscoelastic parameter (Γ). Note that the Γ presented in section 2 is slightly different than [11]. In Fig. 3, two sets of 

pressure waveform results along the aorta are compared; a, b and c are from our in-house quasi 1D nonlinear model for a 

pure elastic case, and d, e, and f represent the corresponding results from a viscoelastic counterpart. As hypothesized by 

Matthys et al., we can see that the results of a viscoelastic case are smoother and thus closer to the experimentally 

measured pressures. Our algorithm for the viscoelasticity is enforcing the viscoelastic properties as source terms of the 

conservation equations. This is a simplified alternative to the formulation presented in Alastruey et al. [11]; however, the 

smoothing effect in the flux-based formulation, presented in [11], has a more rigorous effect on dampening the extra 

oscillations in the results.  

 

 
Fig. 3: Pressure and flow rate time histories in the “Left Renal” artery (#24), for viscoelastic, elastic and experimental models. Elastic 

solution results and experimental measurement reproduced from [11]. 

 

With the current Lax-Wendroff formulation the difference between the elastic and source-term, based viscoelastic 

prediction is less than 0.5%. However, we show a significant improvement compared to the elastic model demonstrated in 

Matthys et al. [10] with both elastic and viscoelastic models.  

 

4. Conclusion 
We have developed a tool to accurately estimate the arterial wave mechanics in the systemic circulation based on a 

quasi-1D formulation. Long wave approximation significantly reduces the number of parameters required to simulate the 

fully 3D problem. Numerical results produce an excellent match with an in vitro measurement in a 55 vessels arterial tree. 

Additionally, the effect of adding a source term based viscoelastic formulation is demonstrated. We show that the 

viscoelasticity provides smoother results compared to the elastic counterpart, resulting to a closer match with the 

experimental measurements. This algorithm is applicable in diastolic blood pressure prediction and inverse prediction of 

the cardiovascular biomarkers.  
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