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Abstract - This article presents a detail analysis of heatlines and entropy generation during natural convection in various enclosures 

with curve (concave and convex) walls. The dimensions of enclosures are fixed in such a way that thedimensionless area of the cavity 

is one and the dimensionless length of the wall is one. Two heating strategies are considered such as (a) type 1: hot bottom wall, cold 

side walls in the presence of adiabatic top wall and (b)type 2: hot left, cold top and bottom walls in the presence of adiabatic right wall. 

Numerical simulations have been carried out for fluid with Prandtl number Pr = 0. 7 at different Rayleigh number (103 ≤ Ra ≤105). The 

distributions of isotherms, streamlines, heatlines and entropy generation due to heat transfer and fluid friction are compared for curved 

walled enclosures with those of square enclosure. The effect of Ra on the total entropy generation, average Bejan number and average 

Nusselt number is illustrated for considered enclosures involving both the heating strategies. The optimal configuration and optimal 

heating strategy is chosen based on the less entropy generation rate and higher heat transfer rate.  
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1. Introduction 
Natural convection in curved wall cavities has acquired many researcher’s attention due to its significant practical 

applications. Based on the applicability in various industrial applications, the present study provides comparison of flow 

and thermal characteristics of fluid within curved (concave/convex) walled enclosures to that of square cavity with same 

unit area. Further, the comparison is carried out for two heating strategies (Case 1: hot bottom wall, Case 2: Hot left wall, 

see Figs. 1) via heatline and entropy generation analysis at Pr = 0:7 for wide range of Ra (10
3
 ≤ Ra ≤10

5
). Thus, the 

comparative study helps to choose proper thermal boundary conditions to achieve higher heat transfer rates and lower 

entropy generation. And such boundary conditions may be used in designing various heat transfer applications such as 

solar collectors [1], heat exchangers [2], fuel cells [3] etc. 

 

2. Mathematical Modeling and Simulations 
The three dimensional physical domains are represented in the Fig. 1 i(a-c) and ii(a-c). And the computational 

domains based on semi-infinite approximation along Z direction are shown in the same Fig. 1i(d-f) and ii(d-f). The flow 

and thermal characteristics are studied based two different cases as follows: Case1: Hot bottom wall, cold side walls and 

adiabatic top wall [Fig 1(i)]. Case 1: Hot left wall, cold top and bottom walls and adiabatic right wall [Fig 1(ii)]. The 

square enclosure is modified into two types of curved enclosures concave and convex. The equal area for the three 

enclosures is achieved by adjusting the length and width of curvature. The computational domain considered in the present 

study is based on semi-infinite approximation along the Z direction. The fluid assumed to be incompressible and 

Newtonian. Except density, the thermo-physical quantities of fluid are assumed to be constant. The flow and temperature 

field is two dimensional, laminar and steady state. The thermal radiation and viscous dissipation effects are sufficiently 

small to be ignored. Under these assumptions, governing equations for natural convection in terms of conservation of mass, 

momentum and energy can be written with following dimensionless variables. 
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Fig. 1: Schematic diagram of the physical domain of case 1(hot bottom wall, cold side walls and adiabatic top wall a): (i) (a-c) and case 

2(hot left wall, cold top and bottom walls and adiabatic right wall): (ii)(a-c) and computational domain of case 1: (i) (d-e) case 2: (ii)(d-

e) for square (a, d), concave (b, e) and convex cavities (c, f). 
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and the governing equations [Eqs. ((2)) - ((4))] are subjected to two types of thermal boundary conditions: 

(a) Case 1: U = V = 0, θ = 1 on wall AB, U =V=0, 
∂𝜃

∂Y
= 0 on wall CD, U = V = 0, θ = 0 on walls BC and DA 

(b) Case 2: U =V = 0, θ = 0 on walls AB and CD, U =V=0, 
∂𝜃

∂Y
= 0  on wall BC, U =V = 0, θ = 1 on wall DA 
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2.1. Streamlines, Heatlines, Nusselt Number and Entropy Generation  
The visualization of fluid flow is studied by the streamlines which are mathematically represented streamfunctions (ψ). 

The relationship between streamfunctions (ψ) and velocity components (U and V) are given as follows: 

 

𝑈 =
∂ψ

∂𝑌
,   V = − 

∂ψ

∂X
=  0 (5) 

 

which yield a single equation 

 

∂2ψ

∂𝑋2
+

∂2ψ

∂𝑌2
=

∂𝑈

∂X
−

∂𝑉

∂𝑌
  (6) 

 

The detailed solution procedure is given in the earlier work [4]. 

A generalized definition on heat transfer coefficient in terms of the local Nusselt number (Nus) along the isothermal 

walls for all enclosures is given as: 
 

𝑁𝑢 = −𝐧. 𝛿𝑆 (
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The expression for unit normal vectors are obtained using the methodology mentioned in the work of Roy [5]. 

The heat flow within the enclosure is displayed using the heatfunction (Π) obtained from conductive heat fluxes 

(− ∂𝜃/ ∂Y, − ∂𝜃/ ∂Y) as well as convective heat fluxes (Uθ, Vθ). The heatfunction equation is as follows: 
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The above equations are solved using Galerkin finite element method and detailed procedure is explained in the earlier 

work [4]. 

Entropy generation due to fluid friction (Sψ ) and heat transfer (Sθ) are calculated using following equations 
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The detailed mathematical procedure for solving the above equation are discussed in the earlier works [6]. 

A dimensionless parameter, Bejan number (Beav) is often used to understand the relative dominance of fluid friction 

and heat transfer irreversibilities via following relationship: 
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 (10) 

 

In agreement with the above definition, Beav>0.5 signifies the dominance of heat transfer irreversibility and Beav<0.5 

signifies the dominance of fluid friction irreversibility. 

 

3. Results and Discussion 
The numerical simulations are carried out in terms of streamlines (ψ), isotherms (θ), heatlines (Π), entropy generation 

due to fluid friction (Sψ) and entropy generation due to heat transfer (Sθ) for Pr= 0.7 at Ra = 10
3
-10

5
 for 28×28 bi-quadratic 

elements. At the low Ra the magnitude of streamfunction is lower resulting in the dominance of the conduction heat 
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transfer and heatlines are orthogonal to the isothermal walls in all the enclosures (Figures are not shown). At higher Ra 

(Ra = 10
5
), due to high velocity gradients, higher intensities of fluid rotation cells are observed 

 

 

 
 

 
Fig. 2: Streamlines (ψ), heatlines (Π), isotherms (θ), local entropy generation due to heat transfer (Sθ) and loca entropy generation due 

to fluid friction (Sψ) within (a) square(b) concave and (c) convex cavities with unit area, with isothermal hot bottom wall, cold side 

walls and adiabatic top wall at Pr = 0.7, Ra = 10
5
. 
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Fig. 3: Streamlines (ψ), heatlines (Π), isotherms (θ), local entropy generation due to heat transfer (Sθ) and loca entropy generation due 

to fluid friction (Sψ) within (a) square(b) concave and (c) convex cavities with unit area, with isothermal hot left wall, cold top and 

bottom walls and adiabatic right wall at Pr = 0.7, Ra = 10
5
. 

 

denoting convective dominant regime in all the enclosures. Fluid rises up from the hot wall due to buoyancy force and 

cools down based on the presence of the cold walls in both the cases (case 1:(Fig. 2(a-c)) and case 2: Figs. 3 (a-c))). Due to 
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symmetric boundary conditions of case 1 enclosures, the clockwise and anticlockwise streamline cells are seen near the left 

and right halves, respectively involving all the enclosures (Figs. 2(a-c))). Common to both the cases, convex cavity 

corresponds (Figs. (2-3)(c)) to higher values of streamfunction as distance between the cold wall is higher compared to the 

square and concave enclosures. However, case 2 enclosures exhibit comparatively higher streamfunction magnitudes than 

those of case 1. Common to both the cases, complicated end-to-end and closed loop heatlines are observed in all the three 

cavities. The presence of circular closed loop heatlines depicts the dominance of convective heat transfer. On the other 

hand, the heatlines at the hot-cold junction (left and right bottom corners for case 1 and top and bottom corners of left wall 

for case 2) are perpendicular to isotherms depicting conduction heat transfer. The isotherms at the core are highly curved 

signifying the convective effect. The maximum temperature gradients are noted at the at hot-cold junctions. Due to larger 

velocity gradients, larger values of Sψ are observed in both case 1 and case 2. However, case 2 (Figs. 3) enclosures exhibits 

larger Sψ values than those of case 1 (Figs. 2). The highest values of entropy generation due to fluid friction (Sθ,max = 4520, 

3528 and 2364 for concave, square and convex respectively) is observed at the hot cold junctions due to larger temperature 

gradients. Common to all enclosures, Sθ is observed to be significantly low at the other portions (expect at the hot cold 

junctions) of all the cavities. 

Figs. 4(a-b) demonstrate the variations of Stotal, Beav, 𝑁𝑢𝑏
̅̅ ̅̅ ̅̅ for case 1 and 𝑁𝑢𝑙

̅̅ ̅̅ ̅
 for case 2 with Ra involving square, 

concave and convex enclosures at Pr=0.7. As the contribution of Sψ,total to the total entropy generation ( Stotal) is negligible 

within 10
3 
≤ Ra ≤ 10

4 
in all the cavities, Stotal is contributed mainly due to Sθ,total. Consequently, the increase of Stotal with Ra 

is insignificant for Ra ≤ 10
4 
(Figs. 4(a-b) (i)). However, velocity gradients increase beyond Ra = 10

4 
resulting in significant 

increase n Sψ,total. Therefore, common to all enclosures, a rapid increase in Stotal is observed. The maximum value of Stotal 

occurs at Ra = 10
5
. At Pr = 0.7, irrespective of the geometry of the enclosures, the total entropy generation (Stotal) is 

significantly larger in case 1 compared to case 2 throughout the range of Ra. The distribution of Bejan’s number (Beav) 

explains the relative dominance of heat transfer and fluid friction irreversibilities (see Figs. 4(a-b) (ii)). It is observed that, 

Beav decreases with Ra irrespective of geometry of the enclosure. At the low Ra, Sθ,total contributes largely to the Stotal and 

hence Beav corresponds to the maximum value (Beav = 1) in all the enclosures. Common to all the enclosures, as Ra 

increases beyond 10
4
, the fluid flow irreversibility increases rapidly consequently, Beav also displays a sharp decline (see 

Fig. 4(a-b) (ii)). As the trend of increment in the values of Sψ,total and Sθ,total with Ra is almost similar in all the three 

enclosures, the variation of Beav is observed to be similar. As seen from Fig. 4(a-b) (iii), the increase of Nub with Ra for the 

three enclosures is almost invariant with Ra till Ra ≤ 10
4 

especially in the case 1 enclosures as the exergy loss due to 

irreversibilities does not influence significantly the heat transfer rate due to thermal gradients (𝑁𝑢𝑏
̅̅ ̅̅ ̅̅ ), thereafter Nub 

increases gradually with Ra. As Ra increases to 10
5
, the intense convective effect results in higher heat transfer rates and 

thus 𝑁𝑢𝑏
̅̅ ̅̅ ̅̅   attains maximum value at Ra = 10

5 
in all the enclosures. The heat transfer rates are higher in the concave cavity 

in the entire range of Ra compared to the square and convex (enclosures in both the cases (see Fig. 4(a-b) (iii)). This may 

be due to the higher thermal gradients due to the least distance from the cold curved walls of the concave cavity in both the 

cases. Overall, concave cavity may be optimal based on the higher heat transfer rates with similar order of entropy 

generation for all geometries (see Figs. 4(a-b)). 

 

4. Conclusion 
The present work provides a detailed analysis to identify a thermally efficient enclosure among the curved wall 

cavities (convex and concave) and compare the performance with a regular square enclosure corresponds to equal area 

(unit area) via heatline and entropy generation based analysis at the low and high Ra for Pr = 0.7.The comparative study of 

three different geometries show that the heat and fluid flow distributions are found to be significantly affected by the height 

of the enclosure and the curvature of the walls. Further, the comparative study helps to choose proper thermal boundary 

conditions to achieve higher heat transfer rates and lesser entropy generations. Common to both the cases among the three 

enclosures, the concave enclosure is preferred over the square and convex enclosure as the concave enclosure is 

corresponds to comparatively higher heat transfer rates and almost similar entropy generation rates. On the other hand, heat 

flow visualization and heatline analysis states that, convex enclosure lead to enhanced flow intensities and thermal mixing. 

Although case 1 enclosures correspond to slightly higher heat transfer rates based on the lower entropy generation, the case 

2 boundary conditions are considered as the optimal heating strategy for the efficient heat transfer rate and reduced 

irreversibilities (less entropy generation or exergy loss) for all Ra at Pr = 0.7. 
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Fig. 4: Variation of the total entropy generation(Stotal:(a-b)i), average Bejan number(Beav:(a-b)ii) and the average Nusselt number alone 

hot bottom wall(𝑁𝑢𝑏
̅̅ ̅̅ ̅̅ :(a iii)) and hot left wall (𝑁𝑢𝑙

̅̅ ̅̅ ̅:(b iii)) with Ra for both case 1 and cass 2 [square(—),concave(_ _ _ ) and convex(- - 

-) ] cavities at Pr=0.7. 

 

Nomenclature 
Be  Bejan number  

f function 

g acceleration due to gravity, m s−
2 

 k thermal conductivity, W m
−1 

K
−1  

N total number of nodes  

n normal vector to the plane 

 Nu            local Nusselt number  

𝑁𝑢̅̅ ̅̅  average Nusselt number 

 p pressure, Pa 

P dimensionless pressure 
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Ra Rayleigh number 
S dimensionless entropy generation 

Sθ, Sψ        dimensionless entropy generation due to heat transfer and fluid friction, respectively 

Stotal dimensionless total entropy generation due to heat transfer and fluid friction 
T temperature, K 

u, v x and y components of velocity, respectively m s
−1

 

U, V X and Y components of dimensionless velocity, respectively 

X, Y dimensionless distances along x and y coordinate, respectively 
Greek symbols  
α thermal diffusivity, m

2 
s

−1 

 
β volume expansion coefficient, K

−1 

 
γ penalty parameter  
θ dimensionless temperature  

ν kinematic viscosity, m
2 
s

−1  

ρ density, kg m
−3

 

Φ basis functions 
Π dimensionless heatfunction 

 ψ streamfunction  

Ω two dimensional domain 

Subscripts 

b bottom wall l left wall r right wall t top wall 
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