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Abstract - The combined effect of different initial conditions types and variation of Rayleigh number on thermosolutal convection 

characteristics is numerically investigated in a horizontal annulus filled with a porous medium saturated by a binary fluid. The control 

parameters, radius ratio, R = 1.2, Lewis number Le = 2 and cooperating buoyancy forces, N = 2, are considered in this investigation. 

Darcy's equation, conservation of the energy and species concentration equations are solved with the Alternating Direction Implicit 

(ADI) scheme, based on the Centered Finite Difference discretization. The steady-state numerical results using three types of initial 

conditions show that different multicellular flow patterns are obtained with increasing the Rayleigh number. The average Nusselt and 

Sherwood numbers behaviors are also discussed.  
 

Keywords: Thermosolutal Convection, Porous Medium, Annular Space, Initial Conditions, Multicellular Flows, Heat and 

Mass Transfer Rates. 

 

 

1. Introduction 
As early as 1976s, natural convection in horizontal porous annulus heated from the inner cylinder and cooled from the 

outer one, has been numerically and experimentally investigated [1]. According to three initial conditions modes, the 

Galerkin method has been used to analyze the different bifurcations phenomena of thermal convection [2]. The resulting 

convergent solutions have proven the existence of a critical Rayleigh-Darcy number value from which the average Nusselt 

number has the same evolution whatever the initial conditions types used. In studies [3-4] a second order Finite Difference 

scheme has been employed, based on the Alternating Direction Implicit method and coupled with successive under 

relaxation to solve the two-dimensional Darcy-Boussinesq equations. For a radius ratio above 1.7 and Rayleigh numbers 

above a critical value, authors exhibit a closed hysteresis loop, indicating the presence of dual solutions from two to four 

convective cells, depending on the initial conditions used. The increase of Rayleigh number in the system of small radius 

ratio (i.e., below 1.7) involves a multicellular flow without the hysteresis loop behavior. The numerical results obtained in 

[5] predict the bifurcation point from unicellular flow to multicellular flow for the cavities of radii ratios R = √2 and 2. 

Recently, the first- and second-order perturbed velocity and temperature fields are determined analytically in terms of 

Bessel functions based on heat conduction state profile [6]. The analysis shows that a transition of two convective cells to 

four cells is possible, then, the critical Rayleigh-Dacry number values for different thicknesses of the annular space are 

determined with accuracy. The numerical experiment of the Darcy-Brinkman model has been investigated in [7]. This 

work evaluated same bifurcation points for various Darcy number values.  

Hence, the main objective of the present investigation is to evaluate the initial conditions effect on the flow structure 

and heat and mass transfer rates in a horizontal porous annulus. The annular space is filled with a porous medium saturated 

with a binary fluid. The inner and outer cylinders of radius, respectively, ri and ro are maintained at constant and uniform 

temperatures (Ti , To) and concentrations (Si , So), with Ti > To and Si > So, as shown in Figure 1. The porous medium is 

considered to be homogeneous and isotropic and in local thermal and solutal equilibrium with the fluid. The flow field is 

assumed to be two-dimensional and laminar, also the binary fluid is considered to be incompressible and satisfying the 

Boussinesq approximation: 𝜌 = 𝜌0[1 − 𝛽𝑇(𝑇 − 𝑇0) − 𝛽𝑆(𝑆 − 𝑆0)], where 𝜌0 is the reference density and 𝛽𝑇 and 𝛽𝑆 are the 

thermal and solutal expansion coefficients, respectively. All the results presented in this paper are for the radius ratio R = 

1.2, Lewis number Le = 2 and buoyancy ratio N = 2.  
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Fig. 1: Schematic diagram of the problem. 

 

2. Mathematic Formulation 
The two-dimensional governing equations that describe the laminar steady-state are Darcy's equation, 

conservation of energy and species concentration equations, which may be written in dimensionless form using stream 

function, Ψ, and the formulation is as follows: 

 

 
∇2𝛹 = −𝑅𝑎 [(𝑠𝑖𝑛𝜑

𝜕𝑇

𝜕𝑟
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𝜕𝜑
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𝑟
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𝜕𝜑
)] 

 

(1) 

 

 (�⃗� . 𝛻)𝑇 = ∇2𝑇 

 

(2) 

 

 (�⃗� . 𝛻)𝑆 = 𝐿𝑒−1∇2𝑆 (3) 

   

Where T and S are the dimensionless temperature and solute concentration, respectively. Ψ is the stream function 

defined by: 𝑢 =
1

𝑟

𝜕𝛹

𝜕𝜑
 and 𝑣 = −

𝜕𝛹

𝜕𝑟
, where u and v are the radial and tangential  dimensionless velocity components. 

In the above equations, the three dimensionless parameters are the Darcy-Rayleigh number, 𝑅𝑎 =
𝑔𝛽𝑇∆𝑇𝐾𝑟𝑖

𝜈𝛼
, the 

buoyancy ratio, 𝑁 =
𝛽𝑆∆𝑆

𝛽𝑇∆𝑇
 and the Lewis number, 𝐿𝑒 =

𝛼

𝐷
. Where g is the gravitational acceleration, the quantities 𝛽𝑇 

and 𝛽𝑆 are thermal and solutal fluid expansion coefficients, K is the permeability of the porous medium, 𝜈 is the 

kinematic viscosity, 𝛼 is the thermal fluid and porous medium and D is the solutal diffusivité. 

The dimensionless boundary conditions applied on the active walls are defined as follows:  

 

 r = 1 , ∀𝜑 : T = 1 , S = 1 and 
𝜕𝛹

𝜕𝜑
 = 0 (4) 

 r = R , ∀𝜑 : T = 0 , S = 0 and 
𝜕𝛹

𝜕𝜑
 = 0 (5) 

   

Where R is the radius ratio defined by 𝑅 =
𝑟𝑜

𝑟𝑖
. 

Taking into account the symmetry of the problem with respect to the vertical plan passing through the axis of 

cylinders, two others boundary conditions can be added: 

 

 𝜑  = 0 or π , ∀𝑟 : 
𝜕𝑇

𝜕𝜑
 = 0 , 

𝜕𝑆

𝜕𝜑
 = 0 and 

𝜕𝛹

𝜕𝑟
 = 0   (6) 

 

The average Nusselt and Sherwood numbers are calculated respectively by the expressions: 
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The mathematic system Eqs. (1-7) is discretized using Centered Finite Difference method and solved with the 

Alternating Direction Implicit (ADI) scheme. Three initial conditions types, IC, are employed to initialize the stream 

function, temperature and solute concentration fields, when starting out the numerical simulation for each given value of 

Rayleigh number. IC(I): the temperature and solutal concentration fields corresponding to the pure conduction regime, 

IC(II): the temperature and solutal concentration field can generate the bicellular flow and IC(III): the temperature and 

solutal concentration field can generate the tricellular flow. Moreover, the velocity profile is initialized with zero for each 

initial conditions type. 

The validation of the numerical accuracy code is performed through a comparison with other investigations available 

in the literature for the horizontal porous annulus in purely thermal case (Le = 1 and N = 0) for the cavity of radius ratio R 

= 2. Table 1 shows that a great agreement was found with the literature. 

 
Table 1: Comparison between obtained average Nusselt number values and those published in the literature for Le = 1, N = 0, R = 2. 

 

Ra 
Present study Others investigation 

IC(I) IC(II) IC(III) IC(I) IC(II) IC(III) 

150 2.3114 2.3114 2.5463 2.295
[2]

 2.516
[2]

 2.601
[2]

 

200 2.6884 2.6884 2.9257 2.6256
[1]

 2.68
[8]

 2.657
[2]

 

300 3.3170 3.3170 3.5203 3.287
[8]

 (3.48-3.56)
[8]

 (3.48-3.56)
[8]

 

 

3. Results and Discussion 
2.1. Flow Pattern 

The initial conditions modes, namely IC(I), IC(II) and IC(III), have no effect on the flow pattern for Rayleigh number 

values below the critical value (Ra ≤ Rac), where the unicellular flow is identical and characterized by a counterclockwise 

cell occupying the entire annular space. Figure 2 illustrates the streamlines, isotherms and isoconcentration lines within the 

annular space using the initial condition IC(I) type. Increasing Rayleigh number to the value Ra = 47.4 shows that the 

unicellular flow develops to unicellular bi-swirling flow, as illustrated in the subfigure 2.a. This unicellular bi-swirling 

flow occurs over the range 47.4 ≤ Ra ≤ 53.3. At the critical value Rac = 53.4, the creation of a new clockwise cell between 

the two co-rotating cells, see subfigure 2.b, gives rise to the first bifurcation from the unicellular bi-swirling flow to 

tricellular flow, which persists over the whole range 53.4 ≤ Ra ≤ 70.6. When Ra reaches the second critical value Rac = 

70.7, the upper counterclockwise cell is crashed into by clockwise cell below, and the pinching  of the primary cell 

undergoes a new bifurcation from the tricellular flow to bicellular swirling flow, as illustrated in subfigure 2.c. However, 

this flow pattern is observed for a small range of Rayleigh number 70.7 ≤ Ra ≤ 71.5. The system under investigation 

transits from bicellular swirling flow to tetracellular flow at Rac = 71.6, see subfigure 2.d, through the creating of a 

clockwise cell between the two counterclockwise cells characterizing the bicellular swirling flow. The tetracellular flow is 

obtained throughout the whole the range 71.6 ≤ Ra ≤ 365.5. The same mechanism of bifurcation from tricellular flow to 

bicellular swirling flow gives rises to a reverse transition from tetracellular flow to bicellular flow at Rac = 365.6, see 

subfigure 2.e. This second bicellular flow persists over the entire range 365.6 ≤ Ra ≤ 380. 

Computation with IC(II) initial conditions type shows that the onset and development of multicellular flows process 

discussed for the IC(I) type occurs with the same scenario until Ra ≤ 53.3. However, for IC(II) type, only the bifurcation 

from unicellular bi-swirling to tricellular flow occurs at Rac = 53.4. This result is the major interest of this initial condition 
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type allowing the prediction of a precise steady-state solution, i.e. tricellular flow, whatever the Rayleigh number 

value for Ra ≥ 53.4. 

 

 

 

  

 𝛹𝑚𝑎𝑥
+ = 3.7033 𝛹𝑚𝑎𝑥

+ = 5.1447 , 𝛹𝑚𝑎𝑥
− = 1.0925 

 𝑁𝑢̅̅ ̅̅ = 1.0176, 𝑆ℎ̅̅ ̅ = 1.0667  𝑁𝑢̅̅ ̅̅ = 1.0777 ,  𝑆ℎ̅̅ ̅ = 1.2391 

 (a)  Ra = 50 (b)  Ra = 70  

  

 𝛹𝑚𝑎𝑥
+ = 5.2159 , 𝛹𝑚𝑎𝑥

−  = 1.8500 𝛹𝑚𝑎𝑥
+  = 18.7758 , 𝛹𝑚𝑎𝑥

−  = 6.1112 

 𝑁𝑢̅̅ ̅̅  = 1.0892 , 𝑆ℎ̅̅ ̅ = 1.2719  𝑁𝑢̅̅ ̅̅  = 1.6855 , 𝑆ℎ̅̅ ̅ = 2.4691 

 (c)  Ra = 71 (d)  Ra = 300   

 

 

 𝛹𝑚𝑎𝑥
+ = 22.2263  ,  𝛹𝑚𝑎𝑥

− = 7.1546 

    𝑁𝑢̅̅ ̅̅ = 1.6078  ,  𝑆ℎ̅̅ ̅ = 2.4132 

       (e)  Ra = 370 

Fig. 2: Flow patterns using IC(I) type as initial conditions for R = 1.2, Le = 2 and N = 2. 

 

Figure 3 shows the obtained results for initial condition IC(III) type. Two important remarks are observed for this 

mode. Firstly, a direct transition is reported from unicellular to bicellular flow, see subfigure 3.a, unlike the two 

previous initial conditions types, where the unicellular flow transits to the unicellular bi-swirling flow. Also, for the 

IC(III) type, the bifurcation occurs at a low critical value, Rac = 46.5, as compared with the two other initial conditions 

types, where Rac = 47.3. When the Rayleigh number is increased beyond the value Ra = 49.7, the pinching of the main 

cell gives rise to the bicellular swirling flow, see subfigure 3.b. This flow persists until Ra = 54.3, where a small 

increases in Rayleigh number to Rac = 54.4, leads to a transition from bicellular swirling flow to tricellular flow, see 

subfigure 3.c, across the entire range 54.4 ≤ Ra ≤ 98.3. Another bifurcation is detected at Rac = 98.4, where the 

tricellular flow transits to a first tetracellular flow at Rac = 98.4. This latter flow structure persists in the whole range 

98.4 ≤ Ra ≤ 103.1, as illustrated in subfigure 3.d. Furthermore, the system under consideration undergoes a reverse 

transition to bicellular flow (seen Figure 3.e) occuring over the range Rac = 103.2 ≤ Ra ≤ 279.9. Soon after, at Rac = 

280, the system shifts again to a second tetracellular flow, as shown in subfigure 3.f. 
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 𝛹𝑚𝑎𝑥
+  = 3.6304 , 𝛹𝑚𝑎𝑥

−  = 0.5106 𝛹𝑚𝑎𝑥
+  = 3.9941, 𝛹𝑚𝑎𝑥

−  = 0.9596 

 𝑁𝑢̅̅ ̅̅  = 1.0165,  𝑆ℎ̅̅ ̅ = 1.0630  𝑁𝑢̅̅ ̅̅  = 1.0258 ,  𝑆ℎ̅̅ ̅ = 1.0935 

 (a)  Ra = 49 (b)  Ra = 54  

  

 𝛹𝑚𝑎𝑥
+  = 5.8525 , 𝛹𝑚𝑎𝑥

−  = 1.5081 𝛹𝑚𝑎𝑥
+  = 7.234  , 𝛹𝑚𝑎𝑥

−  = 2.9058 

 𝑁𝑢̅̅ ̅̅  = 1.1078  ,  𝑆ℎ̅̅ ̅ = 1.3118  𝑁𝑢̅̅ ̅̅  = 1.2124 ,  𝑆ℎ̅̅ ̅ = 1.5490 

 (c)  Ra = 80 (d)  Ra = 100  

  

 𝛹𝑚𝑎𝑥
+  = 13.5570 , 𝛹𝑚𝑎𝑥

−  = 5.0175 𝛹𝑚𝑎𝑥
+  = 22.4798, 𝛹𝑚𝑎𝑥

−  = 6.8329 

 𝑁𝑢̅̅ ̅̅  = 1.3015 ,  𝑆ℎ̅̅ ̅ = 1.7767  𝑁𝑢̅̅ ̅̅ = 1.8274,  𝑆ℎ̅̅ ̅ = 2.7327 

 (e)  Ra = 200 (f)  Ra = 380  

Fig. 3: Flow patterns for IC(III) type, R = 1.2, Le = 2 and N = 2. 

 

2.2. Flow Intensity 
Figure 4 illustrates the variation of the maximum stream function, 𝜓𝑚𝑎𝑥

+ , corresponding to the counterclockwise cells 

and 𝜓𝑚𝑎𝑥
− , corresponding to the clockwise cells with respect to the Rayleigh number value. The above descriptions of the 

transition between the different flow structures explain clearly the variation of the stream function behavior with increasing 

Rayleigh number. Figure 4 shows a linear increase in 𝜓𝑚𝑎𝑥
+  with increasing Ra, which is the natural effect of thermosolutal 

convection increasingly important. In this context, a perfect matching of 𝜓𝑚𝑎𝑥
+  was observed between the three initial 

conditions types. So, the maximum stream function of the counterclockwise cells, 𝜓𝑚𝑎𝑥
+ , is not influenced by the nature of 

the initial conditions whatever the Ra values. 

The challenge in studying initial conditions effect on thermosolutal natural convection in the confined porous media 

comes mainly from the inherent variety of the flow structures and difficulty of their further development. The transition 

from the unicellular bi-swirling flow (𝜓𝑚𝑎𝑥
− = 0) to the tricellular flow at the critical value Rac = 53.4 for IC(I) type is 

associated with an increase in 𝜓𝑚𝑎𝑥
− . On the other hand, the reverse transition from tricellular flow to bicellular swirling 

flow at Rac = 70.7, is associated with the increase of the clockwise cell size, which causes an enhancement of the 𝜓𝑚𝑎𝑥
−  

(38.58%). Also, the maximal stream function of the clockwise cells, 𝜓𝑚𝑎𝑥
− , is improved again by 5.79% through the 

bifurcation from tetracellular flow to bicellular flow at Rac = 365.6.  
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Fig. 4: Evolution of 𝜓𝑚𝑎𝑥

+  and 𝜓𝑚𝑎𝑥
−  using the three initial conditions types with respect to Ra, for R = 1.2, Le = 2 and N = 2. 

 

However, the introduction of IC(II) and IC(III) modes implies different behaviors of 𝜓𝑚𝑎𝑥
−  compared to those obtained 

for IC(I) type. As discussed previously, the IC(I) and IC(II) have the same flow pattern for all the Rayleigh number range 

Ra ≤ 70.6, i.e., unicellular, unicellular bi-swirling, and tricellular flow. This gives the same variation of 𝜓𝑚𝑎𝑥
−  for both 

modes. However, the tricellular flow obtained with IC(II) mode persists over the range Ra ≥ 70.7, which results in a 

progressive increase of 𝜓𝑚𝑎𝑥
−  with respect to Ra, as shown in Figure 4. 

A complex behavior of 𝜓𝑚𝑎𝑥
−  is obtained using IC(III) type. First, the transition from unicellular flow to bicellular 

flow at the critical value Rac = 46.5, enhances 𝜓𝑚𝑎𝑥
− , as illustrated in Figure 4. The bifurcation to tricellular flow at the 

value Rac = 54.4 shows a great decrease in 𝜓𝑚𝑎𝑥
−  (−91,45%), due to reduction in clockwise cell size. Furthermore, an 

identical 𝜓𝑚𝑎𝑥
−  variation is observed for both initial conditions IC(II) and IC(III) modes over the range 54.4 ≤ Ra ≤ 98.3 

where the flow pattern is tricellular. Moreover, the transition of the flow pattern based on IC(III) type from tricellular flow 

to tetracelular flow at the critical value Rac = 98.4, allows an almost identical 𝜓𝑚𝑎𝑥
−  variation with IC(I) mode, over the 

entire range Rac = 98.4 ≤ Ra ≤ 365.5, even though calculations initialized with both initial conditions have different flow 

structures. The maximum deviation obtained between both initial conditions in this considered Rayleigh number range is 

4.91%. However, the bifurcation obtained with IC(I) type to the bicellular flow at Rac = 356.6 involves a remarkable 

difference between the three initial conditions: 17.64% between IC(I) and IC(II), and 5.78% between IC(I) and IC(III) at 

the value Ra = 356.6. 

 

2.3. Heat and Mass Transfer Rates 

Heat and mass transfer rates, i.e., average Nusselt number, 𝑁𝑢, and Sherwood number, 𝑆ℎ, are evaluated as a functions 

of Rayleigh number using the three initial conditions types. The obtained results are displayed in Figure 5 for 𝑁𝑢 (here 𝑆ℎ 

has the same behaviors). As it is shown, the overall heat transfer rates are identical for the three initial conditions types 

when the Ra ≤ 46.4, which corresponds to the unicellular flow. Also, 𝑁𝑢 is similar for IC(I) and IC(II) when the structure 

is unicellular bi-swirling flow, 47.4 ≤ Ra ≤ 53.3, and tricellular flow, 53.4 ≤ Ra ≤ 70.6. Meanwhile, the transition of the 

flow patterns using IC(III) type from unicellular flow to bicellular flow, Rac = 46.5 ≤ Ra ≤ 49.6, and bicellular swirling 

flow, 49.7 ≤ Ra ≤ 54.3, does not involves a feature of interest energy and mass transfers compared to the other initial 
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conditions mode (0.38%). The bifurcations observed with the IC(I) type from tricellular flow to bicellular swirling flow at 

Rac = 70.7 and to tetracellular flow at Rac = 71.6 allows an enhancement of the average heat transfer rate, which represents 

a significant energy interest for the IC(I) types over the range 70.7 ≤ Ra ≤ 365.5. However, the reverse transition from the 

tetracellular flow to bicellular flow at the critical value Rac = 365.6 involves a remarkable reduction of the heat transfer 

rate, −11.09%. In comparison, the linear increase of 𝑁𝑢 for the IC(II) mode shows that the only possible flow for this 

mode beyond the critical value Rac = 53.4 is the tricellular flow. In addition, as a direct result of increasing Ra, the 

thermosolutal convection becomes more important. 

 

  
Fig. 5: Evolution of 𝑁𝑢 as function of Ra. 

 

For the IC(III) mode, the transition from the tricellular flow to tetracellular flow at Rac = 98.4 leads to a sudden 

increase in 𝑁𝑢 by 3.69%. On the entire range 98.4 ≤ Ra ≤ 103.1, the evolution profiles of 𝑁𝑢 values with respect to Ra 

using the IC(I) and IC(III) types are perfectly identical. Reducing the number of the convective cells when the system 

under consideration bifurcates at Rac = 103.2 using IC(III) mode from tetracellular flow to the bicellular swirling flow 

involves a falling of thermal transfer rate to achieve −8.31% (−14.77% for 𝑆ℎ) at this critical value of Ra. Upon the whole 

range 103.2 ≤ Ra ≤ 279.9, the IC(III) mode represents the lowest transfer rate compared to the IC(I) and IC(II) modes of 

13.03%, and  8.41%, respectively. Although, improvements of the transfer rate are recognized through the return from the 

bicellular flow to tetracellular flow at Rac = 280, 13.45%. In this situation, the two modes IC(I) and IC(III) are in perfect 

agreement. Energy interest of the IC(III) mode is observed for Ra ≥ 365.6, where only IC(III) mode provides a maximum 

number of convective cells (tetracellular flow), leading to the highest thermal and solutal transfer rates compared to the 

other IC's modes, 11.11% and 3.75%, at Ra = 365.6, respectively for IC(I). 

 

 

 

3. Conclusion 
The present investigation involves the numerical simulation of initial conditions effect on flow patterns and heat and 

mass transfer rates in a two-dimensional horizontal annular R = 1.2. Centered Finite Differences method has been used for 
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the discretization of the governing equations and solved with the ADI scheme. For the calculations initialized with IC(I) 

and IC(III) types, increasing the Ra value involves various flow structures, where the critical Rayleigh number value for 

each transition is determined with accuracy. While the IC(II) type is relatively stable compared with others. Furthermore, 

the heat and mass transfer behaviors are heavily depend to the initial conditions used and the Rayleigh number value. For 

the IC(I) type, energy and mass transfers interest  is observed over the range 70.7 ≤ Ra ≤ 365.5, where the average Nusselt 

and Sherwood numbers reach their maximum value compared to other initial conditions. However, the IC(III) type allows 

a maximum transfer rate for Ra ≥ 365.6. 
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