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Abstract - In this study, the flow characterization of Liquid Crystals (LCs) between eccentric rotating cylinders for different 

eccentricities is simulated using a finite element based commercial software COMSOL Multiphysics. To predict the interconnection of 

micro- and macro-structure of a Nematic Liquid Crystal (NLC), the Landau-de Gennes theory was implemented. Dimensionless 

pressure distribution and dimensionless wall shear stress on the inner cylinder is presented. Comparison of the mentioned 

dimensionless parameters for different eccentricities indicates that higher absolute values occur at higher eccentricity. Moreover, 

molecular representation of the NLC shows disclination lines and defects in the domain and also represent the preferred orientation of 

molecules near the solid surfaces. 
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1. Introduction 
The efficiency of journal bearings is directly dependent on the lubricant performance. Lubricants affect the friction, 

wear, and load-bearing capacity. To assess the performance of a lubricant over a broad range of operating conditions, one 

can either conduct numerical simulation which is fast and economical or perform an experimental study which is a time-

consuming and expensive process. 

Numerous experimental and simulation studies were carried out to consider both Newtonian and non-Newtonian fluids 

as a lubricant in both concentric and eccentric cylinders. Grecov and Clermont [1] examined the unsteady flow of 

incompressible non-Newtonian fluids in both concentric and eccentric rotating cylinders applying Stream-Tube Method 

(STM) and found significant viscoelastic effects in moderate and narrow gaps. Noroozi and Grecov [2] investigated the 

rheological behavior of a NLC between concentric cylinders, showing that Liquid Crystalline Materials (LCMs) used as  

lubricants reduce the resistance torque on the rotating cylinder compared with the Newtonian fluids.  

LCMs are known to form an ordered molecular layer close to any solid boundary, which has been known to improve 

the tribological performance [3]. Considering the ability to be ordered near solid boundaries, as well as high load-carrying 

capacity, LCs could be used as lubricants in order to lower the friction coefficients, wear rates, and contact temperature of 

sliding surfaces which leads to an increase in the durability of the solid surfaces and saving energy [4].   

To simulate the flow of LCs, several models have been introduced. One of the most complex continuum models is the 

Landau-de Gennes theory which has been presented in [5] and [6]. The Landau-de Gennes is a powerful model to simulate 

nematic phase of LCs in complex flows even with defects (which are non-singular solutions of the equations).  This model 

works with order parameter tensor Q and the evolution of Q in time [7]. This evolution of microstructure depends on flow 

contribution as well as short- and long-range elasticity.  

In this study, the main objective is to simulate the viscoelastic flow between eccentric cylinders for different 

eccentricities, which is a preliminary geometry for a journal bearing, using finite element based software COMSOL 

Multiphysics. 

 

2. Modelling 
To numerically simulate a rod-like LC between eccentric cylinders, mass, momentum, and evolution of order 

parameter tensor equations were solved. Applying the Landau-de Gennes model, the microstructure of LC, the formation, 

and the evolution of defects in the eccentric cylinder were studied. The evolution equation is defined by traceless and 
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symmetric second order parameter tensor (Q) describing the microstructure of LCMs. This tensor order parameter Q can be 

expressed as below [8] : 

 

𝑄̂ = 𝐹(∇𝑣, 𝑄) + 𝐻𝑠𝑟(𝐷̅𝑟 , 𝑄) + 𝐻𝑙𝑟(𝐷̅𝑟 , ∇𝑄) (1) 

 

Where 𝑄̂ is the Jaumann derivatives of 𝑄 and is defined by Eq.2. 𝐹 is the flow contribution, 𝐻𝑠𝑟and 𝐻𝑙𝑟 are short-

range and long-range elasticity, 𝑣 is the velocity profile and 𝐷𝑟
̅̅ ̅ is the averaged microstructural rotational diffusivity.  

 

𝑄̂ =
𝜕𝑄

𝜕𝑡
+ (𝑣. ∇)𝑄 − 𝑊. 𝑄 + 𝑄. 𝑊 (2) 

 

Where W is the vorticity tensor, 𝑊 =
1

2
[∇𝑣 − (∇𝑣)𝑇]. Flow contribution at the microstructure level depends on Q, 

shape parameter 𝛽, and the rate of the deformation tensor, 𝐴 =
1

2
[∇𝑣 + (∇𝑣)𝑇]. The shape parameter for high aspect 

ratio (length/diameter) rod-shape LCMs is 1. 

 

𝐹 =
2

3
𝛽𝐴 + 𝛽 [𝐴. 𝑄 + 𝑄. 𝐴 −

2

3
(𝐴: 𝑄)𝐼] −

1

2
𝛽{(𝐴: 𝑄)𝑄 + 𝐴. 𝑄. 𝑄 + 𝑄. 𝐴. 𝑄 + 𝑄. 𝑄. 𝐴 − [(𝑄. 𝑄): 𝐴]𝐼} (3) 

 

𝐻𝑠𝑟 shows the inter-molecular forces and is defined by Eq.4 (Grecov & Rey, 2003): 

 

𝐻𝑠𝑟 = 6𝐷̅𝑟 [(
𝑈

3
− 1) 𝑄 + 𝑈𝑄. 𝑄 − 𝑈(𝑄: 𝑄). (𝑄 +

1

3
𝐼)] (4) 

 

Where 𝐼 is the unit tensor and 𝑈 is the nematic potential [9]. 𝐻𝑙𝑟 represents the surface anchoring effects from the 

wall boundaries to the fluid [10]: 

 

𝐻𝑙𝑟 =
6𝐷̅𝑟𝐿1

𝑐𝑘𝐵𝑇
{∇2𝑄 +

𝐿∗

2
[∇(∇. 𝑄) + [∇(∇. 𝑄)]𝑇 −

2

3
𝑡𝑟(∇(∇. 𝑄))]} (5) 

 

In Eq.5, 𝑐 represents the concentration of molecules in the liquid crystalline state; 𝐾𝐵 is the Boltzmann constant; T 

is the absolute temperature; 𝐿∗ = 𝐿2/𝐿1 and 𝐿𝑖 are the Landau coefficients.  

The total stress tensor 𝜏𝑡 for a NLC has three main components which are the symmetric component 𝜏𝑠 - where 

𝜏𝑠 = viscous (𝜏𝑣) + elastic (𝜏𝑒) - asymmetric component 𝜏𝑎, and Ericksen stress tensor 𝜏𝐸𝑟 [6], [10]. 

The dimensionless numbers that are important in this numerical study are Ericksen number (Er), Deborah number 

(De), and Energy ratio (R) [3]: 

 

𝐸𝑟 =
𝑐𝐾𝐵𝑇𝑉ℎ

6𝐿1𝐷𝑟
;  𝐷𝑒 =

𝑉

6ℎ𝐷𝑟
;  𝑅 =

𝑐𝐾𝐵𝑇ℎ2

𝐿1
 

 

(6) 

𝑉 is the velocity of the inner cylinder, ℎ is the flow characteristic length scale, 𝐷𝑟 is pre-averaged rotational 

diffusivity [11]. The dimensionless form of 𝑄̂ is shown below: 

 

𝑄̂ = 𝐹 + (
1

𝐷𝑒
) 𝐻𝑠𝑟 + (

1

𝐸𝑟
) 𝐻𝑙𝑟 

 

(7) 

Furthermore, the dimensionless modified Navier-Stokes equation for a NLC can be written as [12]: 
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𝑅𝑒𝑛. [
𝜕𝑉∗

𝜕𝑡∗
+ (𝑉∗. ∇∗)𝑉∗] = −∇∗𝑝∗ + ∇∗. 𝜏𝑡

∗ (8) 

 

Where 𝑅𝑒𝑛 is a new definition of Reynolds number for LCs and equals to 𝑅𝑒𝑛 = 𝜌𝑉2 𝑐𝐾𝐵𝑇⁄ , 𝑉∗is dimensionless 

velocity, and 𝑝∗is dimensionless pressure. The dimensionless total shear stress 𝜏𝑡
∗ is (𝜏…

∗  represents dimensionless total 

shear stress component): 

 

𝜏𝑡
∗ =

𝜏𝑡

𝑐𝑘𝐵𝑇
= 𝜏𝑎

∗ + 𝜏𝑒
∗ + (

𝐸𝑟

𝑅
) . 𝜏𝜈

∗ + (
1

𝑅
) . 𝜏𝐸𝑟

∗  (9) 

             

Governing equations are continuity equation, Eq.7, and Eq.8, which are a set of six coupled non-linear PDEs. To 

simulate LCs in COMSOL Multiphysics, we used Laminar flow module (SPF) and PDE general module (G) in two 

dimensions. Furthermore, mesh independency and convergence of the final solution study were considered. The 

eccentricity ratio is [𝜖/(𝑅2 − 𝑅1)] × 100, where 𝜖 is the eccentricity and 𝑅1 and 𝑅2 are the inner and the outer cylinder 

radius respectively. The viscous stress tensor, 𝜏𝑣
∗, in the Landau-de Gennes model includes three viscosity 

coefficients (𝜈𝑖
∗) [10] which along with other required parameters in this study, are defined in the table 1. 

 
Table 1: Parameters used in this study. 

 

𝐸𝑟 = 108 𝐷𝑒 = 10 𝑅1 = 0.7 𝑚 𝑅2 = 1 𝑚 𝑅𝑒𝑛 = 10−2 

𝐿∗ = 0.45 𝜈1
∗ = 1 𝜈2

∗ = −1 𝜈4
∗ = 6 Eccentricity ratio = 25%, 50%, 75% 

 

3. Results 
The effect of LCM microstructure on the flow properties on the inner cylinder for various eccentricity ratio at 𝑅𝑒𝑛 =

10−2 and 𝑡 = 1000 𝑠 (which is in the steady state condition), were presented in Fig.1 and Fig.2, which indicate the 

dimensionless pressure distribution (𝑃∗) and dimensionless wall shear stress (𝜏𝑤
∗ ) on the inner cylinder. These figures show 

that increasing the percentage of eccentricity ratio leads to a higher absolute value of pressure distribution and wall shear 

stress on the inner cylinder. Besides, sharp variations in pressure and wall shear stress are occurring at the highest 

eccentricity ratio, while for the lowest eccentricity ratio the pressure distribution and wall shear stress are changing 

smoothly. Moreover, the highest eccentricity demonstrates not only sharper variations, but also a higher difference between 

extreme points. 

 

 
Fig. 1: Dimensionless pressure on the inner cylinder at 𝑅𝑒𝑛 = 10−2 and various eccentricities. 
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In addition, the details of the microstructure of the LCM are presented using a molecular representation. The 

structure in the wider gap is magnified to offer a better visualization. Fig.3 shows the rod-like molecules for the 

eccentricity ratio of  75%. As illustrated, defects and a disclination line in the texture of LC were captured by the 

simulation.  
 

 
Fig. 2: Dimensionless Wall Shear Stress on the inner cylinder at 𝑅𝑒𝑛 = 10−2 and various eccentricities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Molecular representation of the LC in the wider gap of the domain at 𝜖 = 75% and 𝑅𝑒𝑛 = 10−2. 

 

4. Conclusion 
Numerical simulation of NLC flow between eccentric rotating cylinders for three eccentricity ratios using the Landau-

de Gennes theory were presented. The results indicated that the magnitude of dimensionless pressure distribution and 

dimensionless wall shear stress on the inner cylinder increased with the eccentricity. The higher pressure difference in 

higher eccentricity translates into the higher load-carrying capacity for the LC. Molecular representation of LC was used 

for a better understanding of the molecular microstructure formation near the solid surfaces. The preferred orientation near 

the boundaries, defects, and disclination lines were observed in the simulation results. 
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