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Abstract - Transportation of heat and water suspension (water and silt) in unsaturated-saturated porous media is considered. Moreover, 

the water in suspension is contaminated and this contaminant is adsorbed by the porous media matrix. Also, the inner heat exchange 

between water suspension and the matrix of porous media is considered in the complex model. The deposition of silt in the matrix is 

characterized by a filtration function and the contaminant adsorption is modeled by a sorption isotherm. The mathematical model includes 

a coupled system for the water suspension infiltration, silt, and contaminant (uniformly mixed in the water) transport with dispersion and 

their deposition and adsorption in porous media. Filtration function expresses the rate of silt deposition depending on the amount of 

(immobile) deposited silt. Contaminant adsorption is modeled in terms of the contaminant concentration in suspension, the amount of 

adsorbed contaminant, and the rate of adsorption. The main goal is to develop a suitable numerical approximation that can be applied to 

the solution of direct and inverse problems. In the numerical experiments, we demonstrate the correctness and the effectiveness of the 

used method. 
 

Keywords: suspension and heat transport, heat energy exchange, silt deposition, contaminant adsorption, porous media, 

numerical modelling 

 

 

1. Introduction 
The flow of water suspension (silt particles mixed in water) in porous media was modeled and intensively discussed in 

the last decade. Silt particles are retained at the pores, some of them become immobile and some of them continue 

transportation. Kinetics of particle retention depends on the concentration of particles in suspension, on the amount of already 

retained immobile particles and the speed of water suspension. The retention process is much more complex, influenced also 

by the ionic strength of microparticles and physicochemical mechanisms including contact with porous media. In fact, also 

repulsive interaction occurs, and thus both phenomena, deposition, and release of particles, participate. For practical 

applications, not all attributes and influences could be included in the model. The deposition of particles based on the 

mechanical mechanism modeled in terms of filtration function was presented by Herzig et al [13]. This model was simple, 

expressing just conservation of the mass of deposited particles and particles in suspension. There, the kinetics of particle 

retention is dependent on their concentration in water suspension and level of retained ones expressed in terms of the filtration 

function. Determination of filtration function (dependent on the amount of retained particles) was discussed in a series of 

papers, see [11,14], and citations there. In spite of elegant analysis the used method requires very special (smooth and obeying 

some structural conditions) input data which represent inflow/outflow measurements of concentration. A more complex 

model has been discussed in [12] (see also citations there) where transport of silt solute together with particle transport was 

considered containing deposition/release phenomenon. The kinetics of deposition/release is expressed in terms of silt 

concentration and water velocity changes. Suspension flow is assumed in fully saturated porous media. The flow speed in 

[13] is constant and in [12] is assumed in an analytical form. Besides the filtration property of porous media also the 

distribution of particle deposition in porous media is of interest. 

 In our contribution, we discuss a more complex 3D model for suspension flow where we allow also partial saturation. 

Moreover, we take into account the heat energy transport with its transmission between suspension and the porous media. 

The contaminant in suspension is transported and adsorbed by the matrix. Both deposited silt and adsorbed contaminant 
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change porosity and hydraulic permeability. Also the temperature of suspension changes the viscosity and consequently 

the hydraulic permeability. The suspension flow in unsaturated porous media is governed by gravitation and capillarity 

phenomenon which depends on suspension saturation in porous media. Thus the complex system is strongly coupled.  

Mathematical models for the flow of water and contaminant transport are discussed in monographs, e.g. [1,9,10] and 

numerical modeling with inverse problems we have realized in [6] for 1D case. 

The governing equations of our system consist of a strongly nonlinear and degenerate elliptic-parabolic system. The 

suspension flow is governed by Richard's type equation where capillary pressure and hydraulic permeability versus 

suspension saturation is assumed in an empirical model by van Genuchten/Mualem [4]. Moreover, these fundamental 

flow relations and porosity depend on deposited silt, adsorbed contaminant, and suspension viscosity which depends on 

suspension temperature. 

The heat exchange with the porous media matrix we have analyzed in our previous contribution [15] where only 

clean water has been considered. In this contribution, we will focus on the heat exchange of suspension with the porous 

media matrix and the filtration only in the deposition mode. Our main goal is the development of a correct and efficient 

numerical method for solving the direct (when all model parameters are available) and inverse problem in which we 

determine the heat transmission coefficient and the filtration function. There, the inflow/outflow measurements in 

laboratory experiments are used. In the solution of inverse problems, we consider the 3D sample in cylindrical form. 

The 3D sample enables us to use a large scale of experimental scenarios choosing suitable boundary conditions. We 

choose optimal of them with respect to the reliability of determined model parameters and the technical simplicity of 

realized additional measurements needed for the inverse method. The experiment is schematically drawn in Fig.1.  
In Section 2 we present the mathematical model and in Section 3 its numerical approximation. In Section 4 we 

discuss the solution of the inverse problem in which filtration function will be determined. Numerical experiments are 

introduced in Section 5, where the solution of direct and inverse problems are presented. 

 
 

Fig. 1: Setting of the sample in experimental scenarios. 

 

Our numerical method is based on operator splitting and finite volume method with flexible time discretization 

where successively along with small time interval we separately solve suspension flow, transport of silt and contaminant 

with deposition and adsorption, heat transport by suspension and then in the matrix including the heat exchange. In the 

approximation of the suspension flow model, we follow the approximation strategy introduced in [3] and also used in 

well-known software Hydrus (see [2]). 

 

2. Mathematical model 
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2.1. Suspension flow model 

The flow is modelled by the hydraulic permeability 𝐾 = 𝐾𝑠𝑘(ℎ), with 
 

 𝐾𝑠 = 𝜅0
𝜌𝑔

𝜇
,  (1) 

 

where 𝜌 and 𝜇 are the density and the dynamical viscosity of the suspension, respectively. The coefficient 𝜅0 depends only 

on the structure of the porous medium and 𝑔 is the gravitational acceleration. Denote by 𝜃 suspension saturation,  𝜃𝑓 amount 

of silt in suspension and by ℎ the pressure head of suspension.  

The model function 𝑘(ℎ) is linked with the capillary forces dependent on the corresponding effective saturation 𝜃. (see 

van Genuchten [4]). We note that these parameters depend on suspension temperature 𝑇𝑤, deposited material S = (𝑆1, 𝑆2), 
where 𝑆1 is adsorbed contaminant and 𝑆2 is deposited silt. By 𝐶𝑤 we denote contaminant concentration in suspension. Flux 

of water suspension 𝑞0⃗⃗⃗⃗  is the sum of water and silt fluxes 𝑞𝑤, 𝑞𝑠  and is driven by gravitation and capillary pressure, expressed 

in the terms of hydraulic permeability and saturation using van Genuchten-Mualem empirical model. 

We consider 𝐾 in more general form 
 

 𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, ℎ) =
𝜃𝑠−(𝑆1+𝑆2)

𝜃𝑠
𝐾𝑠(𝑇𝑤, 𝐶𝑤, 𝑓)𝑘(ℎ) (2) 

 

since the deposited material decreases the original porosity 𝜃𝑠. 

Here, 𝐾𝑠 = 𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, 0) is the hydraulic permeability in fully saturated porous media. We consider 𝑘 in the van 

Genuchten/Mualem empirical form (see [4]) 
 

 𝑘(𝜃) = 𝜃
1

2(1 − (1 − 𝜃
1

𝑚)𝑚)2 (3) 
 

where 
 

 𝜃 =
𝜃

𝜃𝑠−(𝑆1+𝑆2)
 (4) 

 

with (originally) fully saturated 𝜃𝑠 and residual 𝜃𝑟 water contents, respectively. The capillary pressure vs. saturation 

(fundamental relation) we consider in the form  
 

 𝜃 =
1

(1+(𝛼ℎ)𝑛)𝑚
,  (5) 

 

where 𝑛 > 1, 𝑚 = 1 −
1

𝑛
 and 𝛼 < 0 are the soil parameters in the van Genuchten-Mualem (empirical) model (see [1,4]). 

In the saturated zone we have (Darcy’s law) 𝑘(ℎ) ≡ 1. The influence of dynamical viscosity on 𝐶𝑤 , 𝑓, 𝑇𝑤 can be found 

on tables for discrete values of variables and we use a spline interpolation of them in our computations. Richard’s type 

equation modelling the contaminated suspension flow with heat transport reads as follows 
 

 𝜕𝑡𝜃 + ∇(𝑞𝑤 + 𝑞𝑠) + 𝜕𝑡(𝑆1 + 𝑆2) = 0 (6) 

 𝜕𝑡(𝜃𝐶𝑤) +  div(𝑞0⃗⃗⃗⃗ 𝐶𝑤𝜃 − 𝜃D ∇𝐶𝑤) + 𝜕𝑡𝑆1 = 0 (7) 

 𝜕𝑡𝑆1 = 𝜅(𝛹1(𝐶𝑤) − 𝑆1) (8) 

 𝜕𝑡(𝜃𝑓) + ∇𝑞𝑠 + 𝜕𝑡𝑆2 = 0 (9) 

 𝜕𝑡𝑆2 = 𝛹2(𝑆2) 𝜃𝑓 (10) 

 𝑐𝑣𝜕𝑡(𝜃𝑇𝑤) − div(−𝑐𝑣𝑞 𝑇𝑤 + 𝜃D𝛻𝑇𝑤) = 𝜎𝜃(𝑇𝑚 − 𝑇𝑤)  (11) 
 𝑐𝑚𝜕𝑡𝑇𝑚 − 𝜆𝛥𝑇𝑚 = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚).  (12) 
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The suspension flux is 
 

 𝑞0⃗⃗⃗⃗ (𝑥, 𝑡) = −𝐾(𝜃, 𝐶𝑤, 𝑓, 𝑆) (∇ℎ − (1 − 𝑓 + 𝑓
𝜌𝑠

𝜌𝑤
)) (13) 

 

then the water and silt flux is 
 

 𝑞𝑤 = (1 − 𝑓)𝑞0⃗⃗⃗⃗ ,   𝑞𝑠 = 𝑓𝑞0⃗⃗⃗⃗  (14) 

 
2.2. Contaminant and silt transport model 

The flux of dissolved contaminant with concentration 𝐶𝑤 denoted by J𝐶𝑤
 is 

 

  J𝐶𝑤
= 𝜃(𝑞0⃗⃗⃗⃗ 𝐶𝑤 − D 𝛻𝐶𝑤).  (15) 

 

Here, v is the seepage velocity of the contaminated suspension linked with the flux 𝑞0⃗⃗⃗⃗ . 
Denote by D the dispersion matrix with the components 
 

 𝐷𝑖𝑗 = (𝐷0 + 𝛼𝑇|v|)𝛿𝑖𝑗 +
𝑣𝑖𝑣𝑗

|v|
(𝛼𝐿 − 𝛼𝑇),  (16) 

 

where 𝛼𝐿 , 𝛼𝑇 are longitudinal and transversal dispersive coefficients, respectively, 𝛿𝑖𝑗 is the Kronecker delta and 𝐷0 is the 

molecular diffusion coefficient. Then, the contaminant transport model is 
 

 𝜕𝑡(𝜃𝐶𝑤) + div(𝑞0⃗⃗⃗⃗ 𝐶𝑤𝜃 − 𝜃D 𝛻𝐶𝑤) = −𝜌𝑚𝜕𝑡𝑆1.  (17) 
 

where 𝜌𝑚 is the density of the porous media matrix and 𝑆1 is adsorbed contaminant by the unit mass of porous media matrix. 

The adsorption of the contaminant is governed by the ordinary differential equation (see [1]) 
 

 𝜕𝑡𝑆1 = 𝜅(𝛹1(𝐶𝑤) − 𝑆1),  (18) 
 

where 𝜅 is the sorption rate coefficient describing adsorption kinetics and 𝛹1 is a sorption isotherm, which can depend on 

(𝑇𝑤 , 𝐶𝑤 , 𝑓, 𝑆). It belongs to a chosen class of functions with tuning parameters underlying for determination via the solution 

of the corresponding inverse problem. 

Conservation of silt in suspension is governed by 
 

 𝜕𝑡(𝜃𝑓) + ∇𝑞𝑤 + 𝜕𝑡𝑆2 = 0 (19) 

 𝜕𝑡𝑆2 = 𝛹2(𝑆2) 𝜃𝑓,  (20) 
 

where 𝛹2 is the filtration function, 𝑆2 is the deposited silt and 𝑓 is the silt fraction in suspension. 
 

2.3. Heat Energy Transport Model 

Conservation of the water heat energy is expressed in partial differential equation 
 

 𝑐𝑣𝜕𝑡(𝜃𝑇𝑤) − div(−𝑐𝑣𝑞0⃗⃗⃗⃗ 𝑇𝑤 + 𝜃D𝛻𝑇𝑤) = 𝜎𝜃(𝑇𝑚 − 𝑇𝑤)  (21) 
 

where 𝜎 is a transmission coefficient, 𝑐𝑣𝑞 𝑇𝑤 being the convective part, and the diffusive part is modelled by dispersion 

matrix D. 

 
2.4. Heat Conduction in Porous Media Matrix 

A simple heat conduction model in the matrix is considered in the form 
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 𝑐𝑚𝜕𝑡𝑇𝑚 − 𝜆𝛥𝑇𝑚 = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚),  (22) 
 

where 𝜆 - heat conduction coefficient and 𝑐𝑚- heat capacity of the matrix. In the solution of inverse problems we consider 

radial symmetric cylindrical sample, and thus we rewrite the considered model in cylindrical coordinates. 

 

3. Mathematical Model in Cylindrical Coordinates 
Our sample is with radius R and height Z. We transform the mathematical model using cylindrical coordinates (r; z), 

which reduces the difficulty of the mathematical model to a two-dimensional case due to radially symmetric boundary and 

initial conditions. 

 
3.1. Flow of Contaminated Water 

The governing partial differential equation for infiltration (in gravitational mode) reads as follows 
 

 𝜕𝑡𝜃(ℎ) =
1

𝑟
𝜕𝑟(𝑟𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, ℎ)𝜕𝑟ℎ) + 𝜕𝑧(𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, ℎ)(𝜕𝑧ℎ − 𝜉)) + 𝜕𝑡(𝑆1 + 𝑆2),  (23) 

 

where 
 

 𝜉 = 1 − 𝑓 + 𝑓
𝜌𝑠

𝜌𝑤
.  (24) 

  
The suspension flux in cylindrical coordinates is of the form 
 

 𝑞0⃗⃗⃗⃗ = −(𝑞0
𝑟, 𝑞0

𝑧)𝑇 ,  (25) 

 𝑞0
𝑟 = 𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, ℎ)𝜕𝑟ℎ, 𝑞0

𝑧 = 𝐾(𝑇𝑤, 𝐶𝑤, 𝑓, 𝑆, ℎ)(𝜕𝑧ℎ − 𝜉).  (26) 
 

3.2. Heat Energy Transport by Water 

A matrix D is of the form 
 

 D = (
𝐷1,1 𝐷1,2

𝐷2,1 𝐷2,2
) = (

𝛼𝐿(𝑞0
𝑟)2 + 𝛼𝑇(𝑞0

𝑧)2 (𝛼𝐿 − 𝛼𝑇)(𝑞0
𝑟𝑞0

𝑧)

(𝛼𝐿 − 𝛼𝑇)(𝑞0
𝑟𝑞0

𝑧) 𝛼𝐿(𝑞0
𝑧)2 + 𝛼𝑇(𝑞0

𝑟)2)
1

|𝑞0⃗⃗ ⃗⃗  |
 (27) 

 

Denote by 
 

 𝑄𝑇𝑟 = −𝑞𝑟𝑇𝑤 + 𝜃(𝐷1,1𝜕𝑟𝑇𝑤 + 𝐷1,2𝜕𝑧𝑇𝑤) + 𝐷𝑜𝜃 (28) 

 𝑄𝑇𝑧 = −𝑞𝑧𝑇𝑤 + 𝜃(𝐷2,1𝜕𝑟𝑇𝑤 + 𝐷2,2𝜕𝑧𝑇𝑤) + 𝐷𝑜𝜃.  (29) 
 

Then, the heat energy transport reads as 
 

                                             𝑐𝑣𝜕𝑡(𝜃𝑇𝑤) − (
1

𝑟
𝜕𝑟(𝑟𝑄𝑇𝑟) + 𝜕𝑧𝑄𝑇𝑧) = 𝜎𝜃(𝑇𝑚 − 𝑇𝑤). (30) 
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3.3. Contaminant Transport 

We define contaminant fluxes 𝑄𝐶𝑟, 𝑄𝐶𝑧 in the same way as 𝑄𝑇𝑟 , 𝑄𝑇𝑧, where we replace 𝑇𝑤 by 𝐶𝑤. Then we rewrite 

the heat transport equation replacing 𝑇𝑤 , 𝑄𝑇𝑟, 𝑄𝑇𝑧 by 𝐶𝑤 , 𝑄𝐶𝑟 , 𝑄𝐶𝑧 and obtain contaminant transport equation in 

cylindrical coordinates. 

 
3.4. Silt Transport 

Similarly we obtain the silt fluxes 𝑄𝑓𝑟, 𝑄𝑓𝑧 as 𝑄𝑇𝑟, 𝑄𝑇𝑧, where we replace 𝑇𝑤 by f. Then we obtain the silt transport 

equation cylindrical coordinates replacing 𝑇𝑤 , 𝑄𝑇𝑟, 𝑄𝑇𝑧 by 𝑓, 𝑄𝑓𝑟, 𝑄𝑓𝑧. 

 
3.5. Heat Conduction In The Porous Media Matrix 

The mathematical model is 
 

 𝑐𝑚𝜕𝑡𝑇𝑚 − 𝜆 (
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑇𝑚) + 𝜕𝑧(𝜕𝑧𝑇𝑚))) = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚).  (31) 

 

These governing equations are completed by corresponding boundary conditions including the external driven forces. 

For simplicity, we assume that on the boundary (or its parts) there are prescribed fluxes or values of the unknown 

ℎ, 𝐶𝑤 , 𝑓, 𝑇𝑤 , 𝑇𝑚 and a combination of them. In fact, also water and heat energy transmission from external driven forces 

into facade could be considered and the corresponding transmission coefficient could be scaled by the solution of the 

inverse problem. 

 

4. Numerical Method 
We consider the half of cylinder crossection because of radial symmetry. The time derivation we approximate by 

backwards difference and then we integrate our system over the angular control volume 𝑉𝑖,𝑗 with the corners  

𝑟𝑖±1/2, 𝑧𝑗±1/2 and with the length (𝛥𝑟, 𝛥𝑧) of the edges.Then, our approximation linked with the inner grid point (𝑟𝑖, 𝑧𝑗) 

at the time 𝑡 = 𝑡𝑘 using abbreviation 𝐾(𝑈) : = 𝐾(𝑇𝑤
𝑘−1, 𝐶𝑤

𝑘−1, 𝑓𝑘−1, 𝑆𝑘−1, ℎ) is 
 

𝜃(ℎ) − 𝜃(ℎ𝑘−1)

𝜏
𝛥𝑟𝛥𝑧 − 𝛥𝑧

𝑟
𝑖+

1
2

𝑟𝑖
[
𝐾(𝑈𝑖+1) + 𝐾(𝑈)

2
(
ℎ𝑖+1 − ℎ

𝛥𝑟
)] + 𝛥𝑧

𝑟
𝑖−

1
2

𝑟𝑖
[
𝐾(𝑈) + 𝐾(𝑈𝑖−1)

2
(
ℎ − ℎ𝑖−1

𝛥𝑟
)] 

                               −𝛥𝑟 [
𝐾(𝑈𝑗+1) + 𝐾(𝑈)

2
(
ℎ𝑗+1 − ℎ

𝛥𝑧
− 𝜉)] + 𝛥𝑟 [

𝐾(𝑈) + 𝐾(𝑈𝑗−1)

2
(
ℎ − ℎ𝑗−1

𝛥𝑧
− 𝜉)]                                (32)  

+(
𝑆1

𝑗
− 𝑆1

𝑗−1

𝜏
+

𝑆2
𝑗
− 𝑆2

𝑗−1

𝜏
)Δ𝑟Δz = 0, 

 

where only changes of {𝑖, 𝑗} are indicated. 

 
4.1. Quasi-Newton Linearization 

In each (𝑟𝑖, 𝑧𝑗) we linearize 𝜃 in terms of ℎ iteratively (with iteration parameter l) following [3] in the following way 
 

 
𝜃(ℎ𝑘,𝑙+1)−𝜃(ℎ𝑘−1)

𝜏
= 𝑅𝑘,𝑙 ℎ𝑘,𝑙+1−ℎ𝑘,𝑙

𝜏
+

𝜃𝑘,𝑙−𝜃𝑘−1

𝜏
,  (33) 

 

where 

 𝑅𝑘,𝑙 =
𝜕𝜃𝑘,𝑙

𝜕ℎ𝑘,𝑙 = (𝜃𝑠 − 𝜃𝑟)(1 − 𝑛)𝛼(𝛼ℎ𝑘,𝑙)𝑛−1(1 + (𝛼ℎ𝑘,𝑙)𝑛)−(𝑚+1) (34) 

 

for ℎ𝑘,𝑙 < 0, else 𝑅𝑘,𝑙 = 0. We stop iterations for 𝑙 = 𝑙∗, when |ℎ𝑘,𝑙∗+1 − ℎ𝑘,𝑙∗| ≤ 𝑡𝑜𝑙𝑙𝑒𝑟𝑎𝑛𝑐𝑒 and then we put ℎ𝑘

: = ℎ𝑘,𝑙∗+1. Finally we replace the nonlinear term 𝐾(𝑈𝑘) by 𝐾(𝑈𝑘,𝑙), then our approximation scheme becomes linear in 
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terms of ℎ𝑘,𝑙+1. Generally, we speed the iteration by a special construction of starting point ℎ𝑘,0 ≈ ℎ𝑘−1 and using suitable 

damping parameter in solving corresponding linearized system. Applying operator splitting method in successive solution 

for temperature, adsorption and deposition at the time section 𝑡 = 𝑡𝑘 we start from 𝑡 = 𝑡𝑘−1 and we use the obtained flow 

characteristics from 𝑡 = 𝑡𝑘 for 𝜃𝑘, ℎ𝑘 and 𝑞 𝑘 and for matrix 𝐷
𝑘
. We use the same approximation strategy for the transport 

of contaminant, silt, and heat energy. 

To obtain approximation linked with the boundary points we apply the same strategy of finite volume method, where 

the control volume 𝑉𝑖,𝑗 is only half or quarter of the 𝛥𝑟𝛥𝑧 corresponding to the inner grid points. All iterations we realize 

in the flow part of the model thanks to the operator splitting strategy. The other model variables are taken from the time 

section 𝑘 − 1. The approximation of other model equation is very similar and approximation for flux 𝑞 0 and matrix �⃗⃗�  
must be done carefully. 

 

5. Inverse Problems 
We choose the optimal experimental scenarios for determination of all model parameters which we restore 

successively. The determination of parameters 𝐾𝑠, 𝑛, 𝛼,𝛼𝐿  and 𝛼𝑇 we have discussed in our previous contributions (see 

[5]). We shortly discuss the determination of transmission coefficient 𝜎 and matrix heat conduction 𝜆, where we discuss 

the influence of 𝑇𝑤 , 𝐶𝑤 , 𝑓, 𝑆 which was neglected (because of a reduced model) in our previous contributions.  
 

 
 

Fig. 2: Time evolution of the temperature in the center of the sample top (blue) and with random noise (red). 
 

By means of our 3𝐷 sample we can choose a suitable input/output boundary conditions to create not invasive and 

relative simple measurements for determination of required model parameters via the solution of inverse problems. To 

validate the reliability of the used scenario we compute the corresponding direct problem (when model parameters are 

given) and we create the data (original) corresponding to chosen characteristics. Then, we add some noise (generated by 

random function) to the original data and these will represent our measurements of corresponding characteristics. Finally, 

we forget the original model data and iteratively we construct the new (optimal) model data, minimizing the distance of 

computed characteristics with the original ones. We test the reliability of the obtained model parameters by choosing 

different starting parameters in the iteration procedure and changing the level of added noise. These facts and the 

sensitivity of characteristics on model parameters create the ground for suitability of suggested experimental scenario. 

 

The determination of model parameters 𝜎, 𝜆 is based on following characteristics. We measure the temperature in the 

center of the sample’s top. In the figure 2 we can see the time evolution of temperature decrease (blue line) with its random 

noise up to 1°C (red line). At this point (on the whole sample axis) the temperature of water and matrix are almost equal 

because of the following experimental scenario. The initial temperature of low saturation (h=-200) of the sample is 90°C 

and we infiltrate water with temperature 10°C through its mantel. The top together with the bottom is flow and temperature 
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isolated. The obtained determination results for 𝜎, 𝜆 based on the characteristic introduced before, with different starting 

points of model parameters are collected in the table 1. As we can see, the random noise up to 1°C causes defect up to 6%. 

Similarly we determine the filtration and adsorption function, where the required tuning parameters we determine from 

measured inflow/outflow characteristics. The filtration function is considered in the form 𝛹2(𝑆2) = 1/(𝑎 + 𝑏𝑆2) where 

tuning parameters  a, b have to be determined. 

 
Table 1: Starting points and different optimal values of  𝜎, 𝜆  for different random noises up to 1°C. 

 

𝜎𝑠𝑡𝑎𝑟𝑡 2 2 0.5 0.5 2 2 0.5 0.5 

𝜆𝑠𝑡𝑎𝑟𝑡 0.5 0.5 0.5 0.5 0.05 0.05 0.05 0.05 

𝜎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 0.9498 0.9684 1.0515 1.0529 1.0396 1.0581 0.9407 1.0575 

𝜆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 0.09954 0.10089 0.10119 0.09949 0.10210 0.09933 0.09897 0.09972 

 
5.1. Direct Solution Of Our Complex Model 

Finally, we present the solution of the system with suspension flow, temperature fields, silt deposition, and also with 

contaminant adsorption. In our numerical experiments, we assume the following model data ([CGS]) 

𝜃0 = 0.38, 𝜃𝑟 = 0, 𝐾𝑠 = 2.4 × 10−4, 𝛼 = 0.0189, 𝑛 = 2.81, 𝐻(0) = 5, 𝑔 = 981, 𝜆𝑣 = 0.03, 𝜆 = 0.1, 𝐷0 = 0.01, 

𝛼𝐿 = 1, 𝛼𝑇 =
1

10
, 𝑐𝑣 = 𝑐𝑚 = 1, 𝜌𝑚 = 1, 𝜎 = 1, 𝜅 = 0.05, 𝛹1(𝐶𝑤) =

1

1+𝐶𝑤
 , 𝑎 = 150 and 𝑏 = 300. 

In figure 3, figure 4 and figure 5 we present the evolution of pressure head, effective saturation, suspension 

temperature, matrix temperature, silt fraction in suspension, deposited silt, contaminant concentration in suspension 

and adsorbed contaminant in 3 time sections. We use 𝑡1 = 97𝑠, 𝑡2 = 377𝑠, 𝑡3 = 829𝑠. The used parameters in the 

filtration function cause quick filling of the pores by the deposited silt near the infiltration boundary. In this case the 

continuation of the infiltration process stopped after short time. Inside the sample, there is a redistribution of the 

saturation leaving part of the sample suspension free as you can see in figure 5. 
 

 
 

Fig. 3: Distribution of the entity values inside the sample at the time 𝑡 = 97𝑠. 
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Fig. 4: Distribution of the entity values inside the sample at the time 𝑡 = 377𝑠. 
 

 
 

Fig. 5: Distribution of the entity values inside the sample at the time 𝑡 = 829𝑠. 
 

Moreover we include figures with level contours of ℎ, 𝜃𝑒𝑓 , 𝑓 and 𝑆2 in the corresponding time sections as we can see 

in figure 6. For time 𝑡 = 97𝑠 we use a red dashed line, for time 𝑡 = 377𝑠 we use a blue dash-dotted line and for time 𝑡 =
829𝑠 we use a green solid line. 

 

 
 

Fig. 6: Time evolution of the contours. 
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6. Conclusion 
Numerical modeling of the suspension flow and the heat and mass transport into unsaturated porous media is 

The mathematical model includes heat, silt, and contaminant transport with heat exchange and adsorption. The adsorbed 

contaminant, deposited silt, and the temperature influence the hydraulic permeability and it causes porosity degradation. 

efficient numerical method is developed on the base of operator splitting, flexible time discretization, and finite volume 

method.  

A laboratory experiment scenario is proposed to determine the heat transmission coefficient and heat conductivity 

in the porous media matrix. In the direct solution of our complex model we demonstrated the correctness and efficiency 

of our numerical method for solving the direct and inverse problem. 
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