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Abstract – The complex interaction of an acoustic cavitation bubble with a boundary is widely exploited in practical applications. In 

ultrasonic cleaning, acoustic cavitation is used to eliminate surface contamination and particulate debris following manufacturing. 

However, very little is known about the fundamental physics behind such processes. Furthermore, bubble collapse in the presence of two 

or more boundaries is considerably different than the traditional problem of collapse near a single rigid wall. In this study, we combine 

the complex pressure-driven dynamics of acoustic cavitation in confinement. We focus on the dynamics and jet development of an 

oscillating gas bubble (𝑅0 = 50 μm) driven by a strong low-frequency acoustic field (𝑝𝑎𝑐 = 95 kPa and 𝑓𝑎𝑐 = 20 kHz). Since inertial 

oscillations are responsible for most of the practical effects of acoustic cavitation, we select an acoustic driving frequency lower than the 

natural frequency of the bubble to demonstrate the transient response. We present results from compressible volume-of-fluid simulations 

with consideration of viscosity and surface tension conducted in the open-source framework of OpenFOAM. We find that the presence 

of a secondary opposing wall intensifies the jet velocities at collapse. We provide a detailed description of the flow inside the gap, 

particularly the complex interaction between flow deflected by the confining boundaries and the oscillatory driving pressure.  By varying 

the gap height and the position of bubble inception, we observe significantly different bubble collapse dynamics across the considered 

parameter space, which can be categorised in three distinct jetting regimes according to relevant nondimensional parameters. We also 

demonstrate how an increased liquid viscosity alters the collapse mechanism and jet formation through a representative case. The results 

presented in this study have immediate consequences in acoustic cavitation applications involving confinement, since through careful 

choice of driving conditions and fluid properties, the desired behaviour to suit the application can be achieved.  
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1. Introduction 
Ever since the discovery of cavitation over a hundred years ago by Lord Rayleigh, cavitation microbubbles have been 

harnessed in an arsenal of applications [1] including: i) medical applications such as non-invasive therapy and drug 

delivery [2,3]  ii) microfluidic (lab-on-chip) devices [4]; and iii) ultrasonic cleaning of surfaces [5]. Although most practical 

engineering applications of cavitation involve bubble clouds, their complex interactions cannot be accurately modelled 

without prior knowledge and understanding of the dynamics of individual bubbles.  

In a uniform flow, a cavitation microbubble will remain spherical and its behaviour is well described by classical 

analytical models such as the Rayleigh-Plesset Equation (RPE)  [6]. However, in practical applications, the pulsation of a 

cavitation bubble is often constrained by nearby boundaries exhibiting more complex dynamics, which are not entirely 

understood. Bubbles near boundaries collapse asymmetrically forming jets, the speed and direction of which are highly 

influenced by i) the type of boundary (e.g. a rigid/elastic boundary, free surface or an adjacent bubble) and ii) the proximity 

of the boundary [7]. Therefore, realistic configurations cannot be described by empirical equations such as the RPE but 

require more sophisticated numerical models.  

Bubble oscillations in narrow gaps have received attention only recently [8–10], but none of these studies considered 

acoustic cavitation dynamics confined by rigid boundaries. To the authors’ best knowledge, this study is the first to address 

this knowledge-gap. Computational Fluid Dynamics (CFD) modelling is used to inform the development of the surrounding 

flow-field and splitting and jet formation events for various bubble positions inside the gap. Previous finite-volume studies 

have shown that the accurate prediction of the bubble radius after multiple collapse-expansion cycles is difficult to 

achieve [11–14]; either because the bubble is too small at the collapse and/or because the highly distorted interface 
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disintegrates quickly after collapse. In this study, our focus is therefore the bubble shape dynamics until first collapse. 

The driving pressure is modelled by an oscillatory boundary condition. 

 

2. Bubble Model and Governing Equations 
The compressible Navier-Stokes (NS) equations are solved using an algebraic Volume-of-Fluid (VOF) method 

within the open-source CFD framework of OpenFOAM to predict the flow conditions both inside and outside the 

bubble [11]. The model is based on the native solver compressibleInterFoam, a pressure-based solver for compressible 

two-phase flow that captures the interface evolution between the two phases. VOF is an interface-capturing method 

known for the ease with which it handles complex splitting and jetting phenomena, topologies synonymous with 

multiphase flows [15,16].  

 
2.1. Governing equations 

The equations of motion are formulated for a single fluid having a common velocity field 𝑼, pressure field 𝑝 and 

density field 𝜌. An advection equation for the volume fraction 𝛼 is solved to capture the gas-liquid interface (Eq. (1)).  

The governing system of equations can be written as follows [11]: 

 

𝜕𝛼𝑙

𝜕𝑡
+ ∇ ⋅ (𝛼𝑙𝑼) + ∇ ⋅ (𝑼𝑟𝛼𝑙𝛼𝑔) = 𝛼𝑙𝛼𝑔 (

𝜓𝑔

𝜌𝑔
 −

𝜓𝑙

𝜌𝑙
) (

D𝑝

D𝑡
) + 𝛼𝑙∇ ⋅ 𝑼 , (1) 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝑼) = 0 , (2) 

𝜕(𝜌𝑼)

𝜕𝑡
+ ∇ ⋅  (𝜌𝑼 ⊗ 𝑼) =  −∇ 𝑝 + ∇ ⋅ 𝕋 + 𝑓𝜎  . (3) 

 

The volume fraction 𝛼𝑙 acts as a phase indicator as follows: 

 

𝛼𝑙 =  {

0                  for gas ,
  0 < 𝛼𝑙 < 1        for interface ,

     1                  for liquid .
 (4) 

     

In Eq. (1), 𝑼𝒓 is the relative velocity at the interface and acts as an artificial compressibility term to ensure a sharp 

interface between the two phases. The parameters 𝜓𝑔 and 𝜓𝑙 are the nonlinear compressibilities of the gas and liquid 

respectively, computed as 𝜓 = 𝐷𝜌/𝐷𝑝 depending on the chosen equation of state. In Eq.(3), 𝕋 is the viscous stress tensor 

and 𝑓𝜎 is the surface tension force, modelled according to the Continuum Surface Force (CSF) method of Brackbill [17]. 
 
2.2. Barotropic closure 

The above system of governing equations Eqs. (1 - 3) is closed by the barotropic equation of state for each phase. The 

nonlinear compressibility of both the gas and liquid phases is considered. For the liquid, the density 𝜌𝑙 is related to the 

pressure 𝑝 through the Tait equation of state: 

𝜌𝑙 = 𝜌0,𝑙 (
𝑝 + 𝐵

𝑝0 + 𝐵
)

1/𝛾𝑙

, 

 

(5) 

where 𝜌0,𝑙 and 𝑝0 are the density and pressure of the liquid at atmospheric conditions, respectively; the Tait exponent 𝛾𝑙 =
7 and the Tait pressure 𝐵 = 331 MPa as in [18].  

Similarly, the pressure 𝑝 and density of the gas 𝜌𝑔 are related through the polytropic equation of state: 
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𝜌𝑔 = 𝜌0,𝑔 (
𝑝

𝑝0
)

1/𝛾𝑔 

,        

 

(6) 

where 𝜌0,𝑔 and 𝑝 are the density and pressure of the gas (air) inside the bubble at atmospheric conditions and 𝛾𝑔 = 1.4 is the 

specific heat ratio for air.  The use of the barotropic equations of state implies that the pressure is independent of temperature, 

therefore the energy equation becomes redundant. 

The fluid type is identified based on the value of the volume fraction 𝛼. The liquid is taken as the primary phase such 

that 𝛼𝑙 = 1 represents water whilst 𝛼𝑙 = 1 − 𝛼𝑔 = 0 corresponds to the gaseous phase. The physical properties, namely the 

density 𝜌 and dynamic viscosity 𝜇, of the respective phases can then be averaged as follows: 

 

𝜌 = 𝛼𝑙𝜌𝑙 + (1 − 𝛼𝑙)𝜌𝑔  , (7) 

 

𝜇 = 𝛼𝑙𝜇𝑙 + (1 − 𝛼𝑙)𝜇𝑔  . (8) 

 

The fluid properties are those for water as a liquid, and air as a gas at atmospheric conditions (~20 °C).  

 
2.3. Simulation setup  

The schematic diagram in Fig. 1a depicts the simulation setup and the boundary conditions. To alleviate some of the 

computational cost of the problem the domain is axisymmetric. The inclusion of viscosity in the model requires that both 

walls be supplemented with no-slip boundary conditions for velocity. A zero-gradient boundary condition is implemented 

for the volume fraction 𝛼 and pressure 𝑝 at the walls. An oscillatory pressure field 𝑝∞ = 𝑝0 − 𝑝𝑎𝑐sin (2𝜋𝑓𝑎𝑐𝑡) is imposed at 

the gap outlet, characterised by the acoustic pressure amplitude 𝑝𝑎𝑐  and the driving frequency 𝑓𝑎𝑐. The use of barotropic 

equations of state Eqs. (5) and (6) means that the pressure 𝑝 must return a non-zero positive value to ensure that the density 

is also non-zero. For this reason, the acoustic pressure amplitude 𝑝𝑎𝑐 is limited to fractions of the ambient pressure: 𝑝𝑎𝑐 =
𝑘𝑝0 where 𝑘 < 1. This prevents the pressure becoming negative in the rarefactional half-cycle of the signal [19]. At the gap 

outlet, the volume fraction 𝛼 and velocity 𝑼 are assigned a zero-gradient boundary condition. 

Fig. 1b shows the relevant geometrical parameters. Both the gap height 𝐻𝑐 and the distance ℎ between the initial position 

of the bubble centre and the primary wall are varied. The parameters 𝐿𝑐 and 𝐻𝑐 together define the aspect ratio of the gap 

𝐿𝑐/𝐻𝑐.  The domain of length 𝐿𝑐 = 1 mm in the radial direction and a variable height 𝐻𝑐 is discretised using recursive 

refinement on an initial uniform grid with resolution of 100 cells in the radial direction. The initial coarse grid is refined 

recursively five times to obtain a minimum resolution of ∆𝑥 ≈ 0.3 μm in the bubble region. This high resolution is required 

to sufficiently resolve the bubble at its minimum volume.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1: a) Simulation setup and boundary conditions; b) Relevant geometrical parameters. 
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Existing studies on the influence of confinement on bubble dynamics assume an undriven, initially small, bubble at 

high pressure to match laser-induced or spark-generated cavitation bubbles in experiments [8–10, 20]. The initial 

conditions in this study are the static equilibrium conditions. The equilibrium radius 𝑅0 is the size at which the surface 

tension 𝜎 at the gas-liquid interface is balanced by the pressure difference at the bubble wall: 

 

𝑝𝐵,0 − 𝑝0 =
2𝜎

𝑅0
 , (9) 

  

where 𝑝𝐵,0 is the initial pressure inside the bubble and 𝑝0 is the atmospheric pressure. The simulations therefore start with 

an overpressure in the bubble prior to excitation by the externally applied pressure field 𝑝∞.  

 
2.4. Validation of the numerical model 

We use the modified RPE for oscillations in a narrow gap derived by Leighton in [21] as a reference solution. This 

equation resembles the standard RPE but with some additional terms to account for the geometrical confinement: 

 

𝑅�̈� [1 +
𝑅

𝐻
(ln [

𝐿𝑐

𝐻
] −1)] +

3

2
�̇�2 [1 + (

4𝑅

3𝐻
) (ln [

𝐿𝑐

𝐻
] −1)] =

1

𝜌𝐿
[𝑝𝐵,0 (

𝑅0

𝑅
)

3𝛾𝑔

− 𝑝0 −
2𝜎

𝑅0
− 𝑃(𝑡)] , 

(10) 

 

 

where the overdots represent time derivatives, 𝐻 = 𝐻𝑐/2, and 𝑃(𝑡) = −𝑝𝑎𝑐sin (2𝜋𝑓𝑎𝑐𝑡). We use Eq. (10) to predict the radial 

motion of the acoustically driven bubble and inform our choice of forcing conditions for a given 𝑅0. Since we are interested 

in inertial oscillations, we choose 𝑓𝑎𝑐 to be lower than the natural frequency of the bubble 𝑓0 (≈ 60 kHz for 𝑅0 = 50 μm). 

While Eq. (10) predicts the collapse time with reasonable accuracy, it does not provide any information on the bubble shape 

or jet velocities. Furthermore, it is only valid for the limiting case when the bubble is at the centre of the gap due to 

assumptions in its derivation [21]. Fig. 2a shows the modified RPE solution and equivalent simulation (see Section 3.1) for 

𝐻𝑐 = 150 μm in response to the acoustic driving signal with 𝑝𝑎𝑐 = 0.95 𝑝0 and 𝑓𝑎𝑐 = 20 kHz, shown in Fig. 2b.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: a) Comparison of modified RPE solution and equivalent simulation for limiting case (𝑑 = 0) with 𝐻𝑐 = 150 μm; 

b) One-cycle of the low-frequency acoustic driving signal 𝑝𝑎𝑐 = 0.95 p0 and 𝑓𝑎𝑐 = 20 kHz. 
 

3. Results 
In this section we present results of a study of the bubble collapse under the action of the oscillatory pressure 

boundary for three different regimes. For each regime, we present selected instants of the pressure and velocity field 

evolution to demonstrate the rich array of dynamics (including necking, splitting, jetting, and collapse) observed in this 

confined geometry. Each frame shows a section-plane through the rotational geometry reflected about the axis of 

symmetry. The upper and lower borders of each frame correspond to the secondary and primary wall, respectively. The 

frames only show a fraction of the radial direction (where the bubble is located). Note that the colour bar ranges vary 
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significantly between each frame. In some frames, the velocity scale shows extremely high maximum velocities, reaching 

up to ~1000 m/s (see Fig. 5). These velocities are not necessarily the maximum jet velocities, but could also be velocities of 

the gas inside the bubble, or bubble collapse velocities [22]. The time series in each of Figs. (4 - 6) starts at maximum 

expansion of the bubble, 𝑅max, the maximum spherical equivalent radius determined from the simulations. Each regime is 

characterised by the dimensionless gap height 𝜂 = 𝐻𝑐/𝑅max and the normalized off-centre distance 𝛿 = (𝐻𝑐/2 −
ℎ)/𝑅max which is the equivalent of the stand-off distance 𝑠 = ℎ/𝑅max for collapse near a single rigid wall. The three regimes 

are presented according to increasing off-centre distance 𝛿, starting from the limiting case when 𝛿 = 0.  
 

3.1. Symmetric splitting with dual-jet formation 
 

Fig. 3: Collapse sequence starting from maximum volume expansion (𝑅max) for 𝑅0 = 50 μm, 𝐻𝑐 = 150 μm and ℎ = 75 μm  

(𝛿 = 0 and 𝜂 = 1.83). Numbers in the bottom left corner of each frame indicate the time in microseconds (μs). 
 

The initially spherical bubble begins to expand under the action of the acoustic driving and reaches its maximum volume 

at 𝑡 = 26 μs with a spherical equivalent radius 𝑅max ≈  82 μm, shown in Fig. 3. By this point, the sphericity of the bubble is 

already lost, as the radial expansion is limited by the proximity of the nearby walls which deflect the flow in the opposite 

direction and towards the centre of the gap. In the lateral direction, the expansion of the bubble is counteracted by the increase 
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in pressure at the boundary. In fact, at 𝑡 = 26 μs, the lateral sides have already begun to shrink as the driving pressure 

on the boundary increases (see Fig. 2b). When the deflected flow from the walls meets the inflow from the pressure 

boundary, an annular flow-focussing mechanism is created that causes the bubble to neck and form an hourglass shape 

at 𝑡 = 37.2 μs. With the continued increase in the driving pressure, the necking proceeds rapidly reaching a maximum 

curvature at 𝑡 = 37.8 μs. At  𝑡 = 38 μs, the thin neck breaks, causing the bubble to split into two daughter bubbles. Since 

𝛿 = 0 (i.e. the case has vertical symmetry), the two bubbles are equal in size. The splitting is accompanied by the 

emission of a spherical pressure wave (visible at 𝑡 = 38 μs) as a result of the high-pressure concentration at the neck of 

the bubble. The annular inflow is converted into two axial jets that are also visible in the frame of 𝑡 = 38 μs. The 

previously annular inflow is converted into two separate axial jets penetrating the two daughter bubbles, each directed 

from the centre of the gap towards the nearest rigid wall. Some small satellite bubbles can be observed at the axis of 

symmetry following neck closure. The axial jets penetrate the respective bubbles as is visible from the protrusions at 

𝑡 = 38.2 μs and proceed to impact and spread along the boundary at 𝑡 = 38.4 μs. 

 
3.2. Asymmetric splitting with dual-jet formation 

By off-centering the initial location of the bubble (𝛿 = 0.29), the symmetry of the problem is broken, revealing a 

second collapse pattern in Fig.4. In this regime, a strong flow-focussing mechanism is also observed (see 𝑡 = 34 μs) 

which causes the bubble to form a thin neck and split, as shown in frames 𝑡 = 36 and 36.2 μs, respectively. However, 

in this regime the two bubbles are of different size, the larger one being closest to the confining boundary. A high-

pressure region visible at 𝑡 = 36.4 μs is responsible for involution and jetting of the lower bubble. This larger bubble 

proceeds to impact the primary wall at 𝑡 = 36.6 μs with a very pronounced jet having a velocity of ~300 m/s.  

Fig.  4: Collapse sequence starting from 𝑅max for 𝑅0 = 50 μm, 𝐻𝑐 = 230 μm and ℎ = 90 μm (𝛿 = 0.29 and 𝜂 = 2.67). 

 

3.3. Collapse onto nearest wall with directed jet 

For sufficiently large 𝛿 the bubble is only minimally (if at all) affected by the secondary wall and behaves as if it 

were located near a single rigid wall, revealing a third collapse regime (see Fig. 5). The initially spherical bubble begins 

to expand under the action of the imposed boundary pressure, reaching its maximum volume with 𝑅max ≈ 87.5 μm at 
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𝑡 = 25 μs. The distal part of the bubble remains mostly spherical while the lower part is flattened out due to the presence of 

the nearby wall. Upon reversal of pressure driving at the boundary, the bottom interface shrinks rapidly while the distal part 

remains relatively spherical (𝑡 = 34 μs). As the bubble continues to shrink, the curvature of the distal part of the bubble 

increases as shown in 𝑡 = 34.8 μs. The high-pressure region above the bubble forms an involution at 𝑡 = 35 μs that reveals 

the onset of jet formation. The jet becomes more visible at 𝑡 = 35.2 μs and reaches a velocity of around 288  m/s  which is 

considerably higher than that observed for collapse near a single rigid wall for an equivalent stand-off distance 𝑠 ≈ 0.7. The 

jet penetrates the bubble and impacts onto the lower wall at 𝑡 = 35.6 μs.    
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 5: Collapse sequence starting from 𝑅max for 𝑅0 = 50 μm, 𝐻𝑐 = 300 μm and ℎ = 60 μm (𝛿 = 1.03 and 𝜂 = 3.43). 

 

3.4. Influence of liquid viscosity on the dynamics 

Fig. 6 shows a representative case comparing the bubble dynamics for the same initial conditions and bubble inception 

position but with an increased liquid viscosity of 𝜇𝐿 = 20 𝜇water. While the maximum volume expansion of the bubble is 

hardly affected (see 𝑡 ≈ 25.6 μs), the overall collapse mechanism is greatly altered, becoming evident at 𝑡 = 36 μs when for 

the higher viscosity the necking is suppressed and the bubble assumes a ‘teardrop’ shape. For 𝜇𝐿 = 𝜇water the bubble splits 

forming two opposing jets (red contours, same as Fig. 4), while for 𝜇𝐿 = 20 𝜇water the splitting is suppressed and collapse 

resembles that near a single rigid boundary (blue thresholds) and therefore transitions to the third regime of Section 3.3.  

 

4. Conclusion 
The acoustic driving introduces a further complexity in the flow-field such that the interaction of this driving with the 

deflected flow from the walls plays a crucial role in the collapse. The presence of confinement combined with the imposed 

boundary pressure result in an oscillatory non-uniform pressure distribution around the bubble causing the bubble to assume 
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Fig. 6: Simulated bubble dynamics starting from maximum volume expansion at 𝑅max for 𝜂 = 2.64 and 𝛿 = 0.29. The  

red contour shows the case of Fig. 4 with 𝜇𝐿 = 𝜇water while blue threshold shows the dynamics for 𝜇𝐿 = 20 𝜇water. 

 
a non-spherical shape at maximum expansion. The bubble collapses rapidly following one of three regimes: symmetric or 

asymmetric splitting with dual-jet formation, or a directed jet onto the nearest wall. The direction of the resulting jet(s) 

depends on the height of the gap (nondimensional 𝜂) and the axial position of the bubble inside the narrow gap (off-centre 

distance 𝛿). Although the presented geometry is relatively simple, we must stress that it has significant implications for 

realistic applications, for example in ultrasonic cleaning where the bubble activity is known to produce strong shear forces 

responsible for removing surface contamination [8-9, 23] and in microfluidic applications for mixing and actuation [24], 

where the number of jets correlates with the number of boundaries confining the bubble [25]. Through careful choice of the 

acoustic driving and fluid properties, the desired dynamic behaviour to suit the application can be achieved. 
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