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Extended Abstract 
 Environmental engineering remote sensing platforms using hyperspectral imagery and other multidimensional 

modalities are often responsible for monitoring coastal regions in order to safeguard national waters. This objective requires 

determining sub-surface turbulent structure from surface water flow spatial measurements for state assessment and decision-

making. The inability of remote sensing platforms to penetrate the water column at depth because of turbulence-induced 

sediment-concentration modulation necessitates using models that dynamically link surface and sub-surface flow structure. 

Large eddy simulations (LES) are a useful proxy for the analysis of hyperspectral imagery due to the tri-dimensional structure 

of both information carrying modalities. Bayesian statistical models are used to revisit the analysis of a large-eddy simulated 

three-dimensional turbulent shear flow [1]. The purpose is the exploration of the feasibility of creating data characterization 

and state prediction system models for sub-surface vorticity and stress, and surface root mean square (rms) velocity and rms 

sediment concentration which could then be utilized in the analysis of environmental hyperspectral imagery.    

Nine turbulent feature time series were derived from forty-one three dimensional LES data cube realizations taken at 

distinct times during steady state conditions. Generative topographic mapping (GTM) [2] is a non-linear latent variable 

mapping which furnishes a two-dimensional organized representation of nonlinear multidimensional data in terms of latent 

variables. The nine-dimensional turbulent feature data points including vorticity, stress, rms cross-mean flow velocity, and 

rms sediment concentration were mapped using the GTM providing a clear segmentation of data points in latent space. This 

segmentation was characterized by a strong demarcation between low rms and high rms value data points. Vorticity time 

series and rms sediment concentration time series were selected for Gaussian mixture modeling and hidden Markov model 

parameter estimation to understand their statistical structure. Gaussian mixture modeling [2] results depict a covariance-

based relationship between vorticity and rms sediment concentration which has a positive linear trend for low values of both 

variables, but which exhibits a negative linear trend at high values. Hidden Markov model parameter estimation [3] results 

substantiate this relationship between the two variables, in particular the nonlinear dynamics where high vorticity levels are 

associated with decreasing rather than increasing levels of rms sediment concentration. This trend is due to turbulence 

dampening where sediment concentration increases the effective viscosity of the sediment-laden fluid flow system to such a 

level that turbulent fluctuations can no longer sustain large sediment particle concentrations. Gaussian process [4] modeling 

is able to provide semi-linear extrapolations of future vorticity and rms cross-mean flow velocity values over time. A strong 

negative linear trend prediction, however, is only possible for rms sediment concentration because of not only the limited 

amount of data but also the limited dynamic range of data values. 
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