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Abstract - Parametric modelling of layer-configuration and heat sink-controlled surface temperatures of layered materials is examined. 

This modelling is in terms of numerical-analytical basis functions and equivalent source distributions, which provide parametric 

representation of temperature fields within and on surfaces of layered material systems. This modelling technique can be utilized for the 

design and optimization of surface temperatures. Results of prototype simulations are presented that demonstrate control of temperatures 

on surfaces bounding layered materials, using embedded heat sinks and different types of layer configurations. 
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1. Introduction 
Optimizing heat transfer through multilayer materials, for control of temperatures at associated surfaces, requires 

estimating the thermal response of layered composite materials, whose fabrication is both feasible and operationally practical. 

Accordingly, parametric models that combine heat transfer characteristics and thermal material properties, enabling 

prediction of temperature fields within multilayer materials and surface temperatures, should be well posed. These models 

should be conveniently adaptable for estimating the thermal response of different types of layered materials. 

A general approach for control of heat transfer through multilayer materials is that of system design which includes heat 

sinks as embedded layers. This approach is motivated by welding processes, where work piece temperatures are controlled 

by thermal contact to base plates, and by electronic system designs requiring thermal management [1]. Parametric modeling 

of heat sink-controlled heat transfer can be based on linear combinations of numerical-analytical basis functions [1], whose 

mathematical foundation is that of Green’s functions and the inverse thermal analysis approach, where parametric models 

provide for inclusion of information concerning the physical characteristics of heat transfer processes. The present study 

concerns parametric modeling of a general system for layered configurations and heat sink-controlled heat transfer in layered 

materials and associated surface temperatures. This system is inherently multiscale in nature, and therefore layered 

configuration and heat sink-controlled heat transfer in layered materials can be represented as occurring on different length 

scales. In addition, model parametrization includes effective diffusivities, which are based formally on replacing the 

advection-diffusion operator with an effective-diffusion operator, i.e., 
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where V specifies the material flow field, 𝜅 the thermal diffusivity, 𝜅𝑒𝑓𝑓 the effective diffusivity which represents the 

combined influence of both thermal diffusion and advection, T is the temperature, and 𝑥 is the position. Physically, advection 

is not expected to manifest as influencing thermal transport locally within a layered material system, but rather as influencing 

thermal transport over an extended length. Accordingly, the phenomenological influence of advection, which is associated 

with ambient environments at surface boundaries of a layered material system, again poses a problem of inverse thermal 

analysis for determination of effective diffusivities. Finally, heat transfer along the heat sink layer is effectively singular 

because of the relatively large thermal diffusivity of this layer. Accordingly, with respect to parametric modeling, this layer 
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can be represented by one having singular characteristics with respect to heat transfer. Heat transfer to the localized heat sink 

layer from adjacent layers of material will depend on the characteristic thermal coupling of layer interfaces, which again is 

a complex material property, not known a priori, and thus appropriately posed for inverse thermal analysis. The singular 

nature of heat sink coupling was demonstrated in reference [2-3]. 

In addition to providing quantitative estimation by means of inverse thermal analysis, parametric modeling can 

provide qualitative estimation of system response. For example, in the case of layer-configuration and heat sink-

controlled heat transfer in layered materials, general design goals can be achieved by adjusting qualitatively relative 

locations and diffusivities of layers. 

 
1.1. Model and Data Spaces 

Following the inverse-problem approach for thermal analysis [4-9], a system is represented by a parametric model. 

The particular choice of a parametric model is termed a parameterization of the system. The choice of a particular 

parameterization, however, is in general not unique. To address the non-uniqueness of system parameterization, inverse 

problem theory has adopted the concept of model space, where sub-regions of this space represent conceivable 

parametric models of the system [5]. Given a model space for a specific heat transfer system, quantitative inverse 

analysis is further enhanced by isolating model-space regions associated with parameterizations that are physically 

consistent, conveniently adjusted with respect to measurement, and sufficiently general in terms of mathematical 

representation. A physically consistent, conveniently adjustable, and sufficiently general parameterization of heat 

transfer in layered materials is significant for the following reasons. First, temperature distributions calculated by inverse 

methods represent a mapping from data space into parameter space; therefore, it is preferable to adopt a parametric 

function representation whose form tends to minimize any bias resulting from its mathematical form. Second, a set of 

parameters associated with a physically consistent representation can in principle be used to extract relationships 

between parameters, which provide further insight related to physical characteristics. Third, control and optimization of 

heat transfer in layered materials for a specific application requires a quantitative assessment of process characteristics 

over a sufficient range of process parameter values. System identification for purposes of process control and 

optimization is only realizable using parametric representations that establish a correspondence between model and 

process parameters over a sufficiently wide range of values. Fourth, a sufficiently general parametric representation can 

be adjusted to include influences due to incomplete information concerning the system. Fifth, for heat transfer processes, 

i.e., heat transfer in layered materials in this study, the data space contains direct measurements of temperature field 

quantities and intermediate field quantities related to these quantities via an assumed physical relationship. Finally, 

specification of a given system parameterization that is complete in the sense that, in principle, it can be applied to the 

inverse analysis of all types of processes within a given class of applications is equivalent to the specification of a 

complete set of basis functions. As discussed previously [1], numerical-analytical basis functions that are constructed 

using the heat-kernel solution of the heat-conduction equation [10] should be complete in this sense. 

Organization of subject areas presented are as follows. First, parametric models of temperature fields for layer and 

heat sink-controlled heat transfer in layered materials are presented. Second, prototype inverse analyses using parametric 

models are described. Finally, a discussion and conclusion are given.  

 

2. Parametric Model 
     The parametric model presented in this section is a phenomenological generalization of the analytical solution 

to the heat conduction equation for heat transfer through a boundary between regions having different thermal properties 

[10]. These models are characterized by general parametric representations that can be further extended and modified. 

     The general physical characteristics of layer-configuration and heat sink-controlled heat transfer through layered 

materials, and IR radiance at their surfaces, provides foundation for a phenomenological parametric representation of 

influences on thermal response due to embedded heat sinks and discontinuous changes in thermal diffusivity at layer 

interfaces. Formally, these influences can be modeled as resulting from phenomenological effective diffusivities, which 

are associated with effective layers of finite, as well as zero, thickness. Contributions to the temperature field can be 
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represented by effective diffusivities providing a phenomenological implicit representation of interface influences. The 

effective diffusivities and layers comprising the parametric model described here include equivalent phenomenological 

representations of complex interface structure and heat sink coupling.  

For layer-configuration and heat sink-control of temperature fields within layered materials and of IR radiance at outer 

outer surfaces where influences of different layers are represented by effective diffusivities, parametric representation in 

in terms of linear combinations of numerical-analytical basis functions is of the form  

 

𝑇(𝑥, 𝑡) = 𝑇𝐴 + ∑ 𝐺(𝑥, 𝑥0, 〈𝜅(𝑥𝑀 , 𝑥0)〉, 𝑛∆𝑡)
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where 𝑇(𝑥, 𝑡) is the temperature as a function of space and time, 𝑇𝐴 is the ambient temperature, 𝑁𝑡 is the number of basis 

functions, ∆𝑡 is the time step, 𝑡  is the total time, 𝑡𝑜 is the starting time, 𝑥 is the current position, 𝑥0 is the starting position, 

and M is the current layer number. Equation (2) represents a linear combination of physically consistent and reasonably 

complete numerical-analytical basis functions for representation of the temperature field. The quantities C(x0), k (k = 1-N), 

and  are the equivalent source, effective diffusivities of the layered system, and time step for numerical integration to 

steady state [1]. The parametric model adopts these quantities as adjustable parameters for inverse thermal analysis and 

simulation of layer-configuration and heat sink-controlled heat transfer in layered materials. The quantity t0 is an adjustable 

scaling parameter for weakening the singular character of basis functions with respect to time. The effective diffusivities 

comprising Eq. (4) are of three types, which are effective diffusivities representing heat transfer through layers, thermal 

contact resistance at interfaces of layers, and heat sink coupling. Shown in Figure 1 is a schematic representation of the 

parametric model. 

 

 
Fig. 1: Schematic representation of parametric model. 

 

For 𝑥𝑘+1 ≥ 𝑥 ≥  𝑥𝑘 , and 
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𝑍𝑇 = ∑ 𝑤𝑛(𝑇(𝑥𝑛
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the location (𝑥𝑘
𝑐), time (𝑡𝑘

𝑐), and temperature values specify constraint conditions, 𝑇𝑘
𝑐, on the temperature field, 𝑇(𝑥𝑘

𝑐 , 𝑡𝑘
𝑐) 

where k represents the layer number of the constraint condition. A set, N, of constraint conditions are imposed on the 

temperature field spanning the spatial and time domain of the layered material by minimization of the objective function, 

𝑍𝑇, defined by Eq. (6).  The input of information into the parametric model is effected by the assignment of individual 

constraint values defined by Eq. (5) and form of the basis functions adopted for parametric representation, which include the 

influence of boundary and constraint conditions, i.e., TH and TL in Figure 1, and characteristic changes of thermal properties 

from one layer to another. The constraint conditions and parameterized basis functions provide for the inclusion of 

information from both laboratory and numerical experiments. The parametric model specifies a general procedure for 

parametric modelling of temperature fields in layered material systems. These parametric models are characterized by 

discrete numerical integration over time, where the time step ∆𝑡 is specified according to the average energy deposited during 

the time for transition of the temperature field to steady state. Mathematical foundation of the parametric model is a discrete 

representation of a parabolic partial differential equation, which is consistent with the physical characteristics of heat 

conduction, using a numerical integration procedure that is unconditionally stable [11]. 

For heat flow between two layers as shown in Figure 1, the steady-state heat flux QL is given by 

 

𝑄𝐿 =   
𝑇𝐻 − 𝑇𝐿

𝑙1
𝑘1

+ 
1

ℎ𝑡𝑐
+

𝑙2
𝑘2

(7)
 

 

where k1, l1 and k2, l2 are thermal conductivities and lengths of layers 1 and 2, respectively, and htc is the thermal conductance 

coefficient of their interface. It should be noted that effective diffusivities in the parametric model, representing contact 

resistances, are equivalent to thermal conductance coefficients. The use of effective diffusivities to represent heat sink 

coupling is based on the observation that, although contact resistance and heat sink coupling are associated with different 

physical processes, their influences on heat transfer through a layered material are formally similar.  

 
3. Prototype Inverse Thermal Analyses and Simulations 

This section describes a series of computational experiments using parametric modelling of layer-configuration and 

heat sink-controlled thermal transport within layered material systems. The results of these computational experiments 

are shown in Figures 2-6. For these calculations, interface contact resistance and heat sink coupling were modelled using 

uniform distributions. The design of these experiments, which uses physically realistic thermal properties, was not for 

demonstrating optimal materials for layer-configuration and heat sink thermal control, but rather general characteristics 

of the parametric models for modelling and simulation, as well as demonstrating feasibly using multilayer and heat sink 

materials. The computational experiments described in this section represent both prototype inverse thermal analyses 

and simulations, which are both the goal of parametric modelling. 

The inverse thermal problem as posed here assumes a complex interaction between a heating surface and multilayer 

material, as well as convective and radiative energy transfer at the outer surface of the multilayer material. For example, 

the interaction of a heating body and multilayer material can involve flow of material through porous microstructure 

within layers, and subsequent evaporation at the outer surface. A first estimate of the thermal response of a layered 

system using inverse analysis, without consideration of details concerning multilayer characteristics and heat sink-layer 

coupling, is determination of an effective diffusivity averaged over a single layer. For this type of thermal-response 

estimation the effective diffusivities 𝜅1, 𝜅2, and 𝜅3  are assumed to be determined according to experimentally measured 

boundary values TH and TL, and an initial estimate 𝜅0 (polypropylene) of the layer-material diffusivity without boundary 

and microstructural influences.  
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    The simulation of heat transfer within complex layered material system, i.e., the direct problem of modelling heat transfer, 

assumes that a bounded parameter space of encoded thermal response, i.e., effective diffusivities, is available. This type of 

simulation is also described by Figure 1, where the effective diffusivities 𝜅1, 𝜅2, 𝜅𝑐, and 𝜅𝑠 are assumed to be values within 

a parameter space, which is a complex function of process variables. 

 
Fig. 3: Prototype inverse thermal analysis and simulation using heat sink and single-layer parametric representation. 

 

 
Fig. 4: Prototype inverse thermal analysis and simulation using double-layer parametric representation. 

 

 
Fig. 5: Prototype inverse thermal analysis and simulation using heat sink and double-layer parametric representation. 
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Fig. 6: Prototype inverse thermal analysis and simulation using interface contact resistance and double-layer parametric representation. 

 

 
Fig. 7: Prototype inverse thermal analysis and simulation using interface contact resistance, heat sink and double-layer parametric 

representation. 

 

4. Discussion 
Adopting the perspective of inverse thermal analysis, the parametric model presented here is part of a model space 

for parametric representation of data within a data space, which is defined as consisting of all possible temperature 

measurements associated with heat transfer through layered materials. Different parametric models within a model space 

and their associated parameterizations can represent different types of data, i.e., measurements and system characteristics 

as well as different types of details concerning these characteristics. The region of model space used for parametric 

representation, i.e., the specific parameterization used for inverse analysis, is based on the availability of information 

and assumed level of approximation for estimating thermal response of a layered material system. Accordingly, a 

specific parameterization selected within a model space is used to construct a parameter space for system 

characterization.  

 
 4.1. Control of Surface Temperatures 

For the prototype inverse thermal analyses presented above, it was assumed that determination of effective 

diffusivities was according to experimentally measured boundary values TH and TL, as well as other assumed system 

characteristics. Another boundary value for inverse analysis is that of the heat-flux, QL, which depends on material 
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properties of the outer surface and ambient environment (see Figure 8). In particular, QL equals the rate of heat transfer 

between the outer surface and ambient environment due to convection (advection and diffusion) and thermal radiation, and 

and may be expressed by 

 

𝑄𝐿 =  ℎ𝑐(𝑇𝐿 − 𝑇𝐴) +  𝜀𝜎(𝑇𝐿
4 − 𝑇𝐴

4) (8) 

where hc,  𝜀, and 𝜎are the convective heat transfer coefficient, emissivity of the outer surface (e.g., 0.97 for polypropylene), 

and Stefan-Boltzmann Constant (5.6704∙10-8 W/(m2K4)), respectively, and TA is the ambient temperature. The second term 

in Eq. (8) is the Stefan-Boltzmann-Law model of radiant heat [12]. For design optimization of layered material systems with 

respect to reducing surface temperature, one seeks to minimize the difference between TL and TA. 

 

 
Fig. 8: Schematic representation of heat-flux boundary condition QL on outer surface of layered material system. 

 

The prototype inverse thermal analyses adopts effective diffusivities and numerical-integration time step as independent 

adjustable parameters. This separation of parameters may provide some insight concerning the scaling of effective 

diffusivities relative to estimated bulk heat-transfer properties of materials comprising a layered system. Formally, however, 

an effective diffusivity, 𝜅𝑒𝑓𝑓, and time step, ∆𝑡, are not independent parameters, and can be combined phenomenological 

into a single adjustable parameter 𝜅𝑒𝑓𝑓 for inverse thermal analysis. In addition, the parametric model can provide 

representation of heat transfer through layered material system when effective diffusivities are functions of position within 

layers. This follows in that Eq. (4) can be adopted for approximate discrete representation of effective diffusivities whose 

forms are that of continuous functions. 

General features of the parametric model were presented in this study with respect to both inverse thermal analysis and 

simulation. Given that a parameter space has been generated for a given system, a selected parametric model can be used for 

system simulation, and thus prediction of required parameters to achieve a given target temperature field. For example, the 

calculations shown in Figures 2-6 can be interpreted as prototype simulations of variations in material properties required to 

achieve a target surface temperature TL, given that a parameter space of encoded thermal response properties is available. In 

principle, this parameter space would include effective diffusivities for different layered and heat sink materials for a 

sufficient range of boundary conditions.  

As discussed in the introduction, heat transfer within the heat sink layer is that of a thin-layer material, interface-coupled 

to adjacent material surfaces. In general, experimental measurement and modelling of temperatures within this layer are for 

a temperature field spanning a two-dimensional surface, which is coupled to a cooling bath at specified locations along its 

edge. Development of parametric-model representations of this temperature field - which is on a different scale than that of 

heat transfer through a multilayer system - poses a separate problem, and is dependent on the system of interest. 

The calculations shown in Figure 2-6 demonstrate inverse thermal analysis and simulation concerning general 

characteristics of layer-configuration and heat sink-controlled temperature fields within layered materials. These general 

characteristics provide foundation for a parametric model whose parameterization is phenomenological. These 

parameterizations can represent influences on thermal response due to complex interface characteristics, i.e., contact 

resistance. 
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5. Conclusion 

Determination of optimal process parameters for achieving a given target temperature field for heat transfer through 

layered material, and temperature at the layered-material surface using layer configurations and heat sinks poses a 

problem. The results of this study demonstrate general features of a parametric model, whose parameterization should 

provide convenient generation of parameter spaces for optimization of layered materials with respect to target heat 

transfer characteristics and surface-temperature reduction. This model consist of a general parametric representation that 

is structured for further extension and modification, which should be the focus of future studies. An important aspect of 

parametric models used for inverse analysis is parameter sensitivity. Further studies should investigate parameter 

sensitivity with respect to generation of parameter spaces for layer-configuration and heat sink-control of heat transfer 

and surface temperatures, using various types of layered materials.  
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