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Extended Abstract 
Comprehension of energy dissipation rates in coastal waters is crucial to understanding such environmental fluid 

dynamical processes as coastal sediment transport, pollution dispersal, and heat and mass exchange across the air-sea 

interface. Traditional methods for understanding sub-surface turbulent velocity energetics have focused on the sampling of 

the turbulent velocity field using acoustic Doppler velocimeters (ADVs) and analyses directed towards the quantification 

of velocity array variability modeled as statistically independent frequency modes experiencing weak spectral energy 

transfer. These statistical methods while enlightening have not provided comprehensive insight into spatial ADV array 

structural dynamics especially in the area of probe system characterization. Understanding the structure of an ADV array 

as an information system is addressed and accomplished here via the analytical revisitation of three-dimensional velocity 

data obtained from a four-probe array deployed during the 2001-2003 Coupled Boundary Layers and Air-Sea Transfer 

(CBLAST) Low Program. The research objective was to show how machine learning algorithms can provide an alternative 

perspective for the characterization of coastal turbulent velocity information with respect to three important areas – 

multivariate turbulent kinetic energy level segmentation, nonlinear turbulent velocity modal analysis, and statistical 

modelling of probe relationships. 

The Coupled Boundary Layer and Air-Sea Transfer Low program (CBLAST-LOW) was a field experiment whose 

goal was to improve understanding of the parameterization of the marine boundary layer and air-sea interaction processes 

during low winds. During the experiment four ADVs were mounted on a submerged steel beam in a linear array 

approximately 3.5 meters below the water surface in the Martha’s Vineyard Sound. Turbulent kinetic energy (tke) 

dissipation rates were estimated from power spectra of the vertical velocity component and through the use of the frozen 

turbulence field hypothesis from data acquired from September 22-23, 2003 [1]. Each dissipation rate value was estimated 

from 20 minutes of data at 20 minute intervals over a time period characterized by two high and two low tides per day. 

Dissipation rates were elevated in general due to energy contamination by surface wave fluctuations and possessed local 

maxima due to the semidiurnal tidal component which inundated the sampling region.  

Gaussian mixture modelling (GMM) [2] using two spatially distant probes, probes 2 and 4, showed a linear proportionality 

covariance structure at high dissipation rates. A second cluster mode exists at low dissipation rates where low values for probe 2 

were associated with a large spread of dissipation rate values at probe 4. This is thought to be due to a turbulence wake effect where 

a large uniform turbulence system sat on top of all the probes at high tide, causing linearly proportional dissipation rates for the 

two probes. At low tide, dissipation rates at probe 2 were extremely low but a residual medium local turbulence level still 

existed at probe 4.  

Generative topographic mapping (GTM) [3] is a non-linear latent variable model which furnishes a two-dimensional 

organized representation of noisy, nonlinear dissipation rate data exhibiting data clusters using latent variables constructed 

under the assumption of an underlying manifold data structure. Latent space is filled with a regular square array of feature 

nodes where the four-dimensional data space points lying on a manifold are images of the latent space under a local but 

nonlinear kernel function mapping. Latent space exhibits a segmentation of data points above and below a root mean 
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square dissipation rate threshold range of 0.0003-0.0004 suggesting a natural threshold range for distinguishing between a 

high tide enhanced dissipate rate regime and a low tide regime. 

Competitive leaky learning (CLL) [4] was used to cluster four-dimensional ADV probe data into five clusters through 

the use of mean site distributions and correlation matrices which provided cluster labels. These clusters represent nonlinear 

modes existing within the four-dimensional data. Clusters 4, 2, and 5 are nonlinear modes characterized by mean 

dissipation rate values which were approximately at the low, medium, and high levels uniformly across each of the four 

probes. Correlation matrices for clusters 4 and 2 show independence of probes 3 and 4 and strong correlation of probes 1 

and 2 respectively. Cluster 5 exhibits strong correlation between probes 1 and 2, and probes 3 and 4. Cluster 3 is a fourth 

nonlinear mode where probe 3 has a high mean dissipation rate but where strong correlation structure exists between 

probes 1 and 2. This correlation of probes 1 and 2 is very similar to correlation matrix structure exhibited in clusters 2 and 

4. Cluster 1 represents the fifth nonlinear mode dominated by an exceptionally high mean dissipation rate at probe 4 along 

with strong independence of probe 4 and strong correlation of probes 1-3 exhibited in its correlation matrix. Cluster modes 

demonstrate intra probe turbulence dynamics where there were three nonlinear modes with semi-uniformly low, medium, 

and high mean dissipation rates, in addition to two ‘nonlinear’ modes having exceptionally high dissipation rates for probes 

3 and 4. 

With sufficient evidence of the correlation of at least two probes in the array, statistical classification was applied to 

the ADV array to investigate the degree to which probe 4 was statistically related to the amalgamation of probes1-3. This 

was performed using Bayesian and naïve Bayesian classification [4] for a dual or bi-modal class distribution where the 

separation threshold level was set at 0.0003. True and estimated Bayesian and naïve Bayesian classification time series for 

the fourth probe’s dissipation rate level (modeled as the causal node) using probes 1, 2, and 3 dissipation rates (modeled as 

effect nodes) were estimated. This structure does not follow the true cause-effect structure of the probe system and was 

applied to examine whether knowledge of information at probe 4 implies covariance-based knowledge at probes 1-3. The 

time series consisted of bimodal class labels for regimes above and below the threshold whose error was then calculated. 

Bayesian classification possessed a slightly lower error than naïve Bayesian classification, suggesting that prediction of 

probe dissipation rate levels from probe 1, 2, and 3 is best performed using covariance, substantiating their clustering 

nature. 

Tidally and surface wave forced, array sampled, shear flow turbulence can have dissipation rates possessing complex 

nonlinear modal structure which can be detected and quantified using advanced machine learning methods of GMM, CLL, 

and GTM analysis. In addition, covariance-based Bayesian classification of the highly variable, spatially separate 

dissipation rate levels provides better results than naïve Bayesian classification, substantiating the sub-cluster nature of the 

ADV probe data. All analyses afford a way to detect, model, and separate nonlinear modes using both probe number and 

energy dissipation rate structure providing an alternative view of probe relationships. 
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