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Abstract – In this study, pressure drop (  ) across air-cooled heat sinks (HSs) are predicted using an artificial neural network 

(ANN). A multilayer feed-forward ANN architecture with two hidden layers is developed. Backpropagation algorithm is used for 

training the network, and the accuracy of the network is evaluated by the root mean square error. The input data for training the neural 

network is prepared through three-dimensional simulation of air inside the channels of heat sinks using a computational fluid dynamics 

(CFD) approach. The developed ANN-based model in this study predicts    with a high accuracy and within       of the CFD-based 

data. The present study suggests that developing an ANN-based model with a high level of accuracy overcomes the limitations of 

physics-based correlations that their accuracy strongly depends on identifying and implementing key variables that affect the physics of 

a thermo-fluid phenomenon.  
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1. Introduction 
Artificial neural networks (ANN), as a subset of machine learning, have been identified as excellent alternatives to 

experimental/computational techniques for modelling hydrothermal characteristics of engineering systems [1]. In this 

study, an ANN-based model is developed to predict pressure drop (  ) across air-cooled heat sinks (HSs) as shown in 

Fig.1. HSs have been widely used as primary thermal management solutions in a variety of applications due to their 

simplicity and low cost [2]. The channel’s length, height, and width are shown by  ,  , and    , respectively,    is the fin 

thickness, the thickness at the base and top plate of the HS are    and   , respectively. It is assumed that the air properties 

remain constant, and flow is steady and remains in laminar regime with a Reynolds number (Re) below 2200. 

 

 
Fig. 1: Schematic of a heat sink. 

 

Data preparation is the first step for training the neural network. In the present study, the input data are prepared 

through a computational fluid dynamics (CFD) analysis by simulating airflow inside channels of HSs. Six HSs with a fixed 

  and    at 100 mm and 1 mm, respectively, and               and                , are considered. For 
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the simplicity,         for all HSs. Each HS is simulated at five Re. Because the flow is uniform and the 

configuration of the fin arrays is symmetrical, only one channel plus half of the fins is considered in the computational 

domain to save the simulation time [3]. The computational domain in the vertical dimension covers the HS’s base to 

 . In the longitudinal direction, the computational domain covers three times and 10 times of   as the upstream and 

downstream, respectively, in addition to the HS’s length. This is equivalent to locating the HS in a long duct. The    

corresponds to the pressure drop across the HS, which includes the effects of sudden contraction and sudden 

expansion losses. Ansys Fluent is used to solve the governing equations, as follows: 

 

Continuity:       (1) 

Momentum conservation: (   )            (2) 

 

where  ,  ,  , and   are the fluid density, velocity, pressure, and viscosity, respectively. Re is calculated based on 

the channel hydraulic diameter (  ), as         ⁄ . Training, testing, and validation are main parts of the ANN 

process [4]. Among 30 input data, 80% of them are selected randomly for training and validation. The remaining data 

are used for testing. The testing dataset does not participate in the training and is only used to evaluate the accuracy of 

the network to predict the true dataset after training [5]. A typical ANN structure consists of an input layer, hidden 

layers, and an output layer, which are connected to each other by neurons. To produce an output signal, a weighted 

sum of input signals to a neuron is passed through an activation function (  ) [6]. Through an iterative process, 

weights are updated using gradient descent algorithms with a learning rate ( ). The loss function corresponds the 

magnitude of the error between the predicted    and simulated   , and is defined by the mean absolute error (MAE). 

The accuracy of the neural network after training is evaluated by the root mean square error (RMSE). In this study,    

is ReLU, and        . Adam optimizer is used to improve training speed and accuracy for updating the weights [7]. 

Usually, a proper number of hidden layers and neurons are obtained by the trial-and-error method. Fig. 2 illustrates the 

multilayer feed-forward ANN architecture used in this study. The ANN architecture consists of one input layer, one 

output layer, and two hidden layers.  

 

 
Fig. 2: Schematic of the ANN architecture used in the present study. 

 

The input layer includes three neurons as inputs, which are  ,    , and Re. The output layer includes only one 

neuron that represents    as the output. Each hidden layer consists of 16 neurons. Backpropagation (BP) algorithm is 

used for the training process. The present study is performed as the proof-of-concept to assess the capability of an 

ANN-based model to predict    across HSs. For this reason, only a limited number of input data are prepared using a 
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CFD approach. Besides, since the accuracy of the simulation process is not the focus of this research, grid independence 

tests are not conducted; however, the simulations are performed using highly fine grid structures. After demonstrating the 

accuracy of an ANN-based model, more comprehensive models can be developed to predict hydrothermal characteristics 

of HSs subject to extensive design and operational parameters.  

             

2. Results 
Fig. 3 represents the corresponding MAE for training and validation processes at different number of epochs. 

Negligible changes in MAE beyond 100 epochs indicate the convergence of the training process at 100 epochs. After 

convergence of the training process, the accuracy of the neural network is assessed by using the testing dataset. 

Corresponding RMSE for the testing dataset was 0.02, which indicates the high accuracy of the ANN-based model in this 

study.  

 

 
Fig. 3: MAE for the training and validation of dataset at different epochs. 

 

Fig. 4 compares the predicted and simulated    for six testing data. 

 

 
Fig. 4: Comparison between ANN-based (predicted)    and CFD-based   . 
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The difference between the predicted and simulated    is calculated as (           )          ⁄ , which 

the index CFD and ANN stands for the CFD-based and ANN-based   , respectively. The maximum difference 

between the predicted and simulated values is below 7.9%, which indicates the excellent accuracy of the developed 

ANN-based model in this study. By demonstrating the high capability of an ANN-based model to precisely predict    

across HSs, ANN can be used as a strong tool to design HSs in broad applications, as long as a large dataset of precise 

data is provided as the input. 

 

3. Conclusion 
An ANN-based model was developed to predict    across air-cooled HSs operating in laminar flow. Since the 

focus of this research was to demonstrate the capability of the ANN model to predict   , training process was 

performed using a limited number of input data obtained from CFD. It was found that the developed ANN model can 

predict    with an excellent accuracy of below 7.9%. The present study suggests that if enough numbers of accurate 

data are prepared as the input, ANN-based models can be leveraged as excellent tools to design and/or optimize 

thermo-fluid systems. Another substantial advantage of an ANN-based model is its independency from physics-based 

variables that are generally required by correlations. The accuracy of a physics-based corelation strongly depends on 

identifying key parameters that affect a thermo-fluid phenomenon, otherwise the correlation is not sufficiently valid to 

predict the hydrothermal phenomenon. An ANN-based model, on the other hand, is based on the patterns that are 

prepared by the input data. As a result, as long as a large dataset of accurate input data is prepared for training the 

network, an ANN-based model predicts the hydrothermal characteristics with a high level of accuracy. 

 

Acknowledgements 
This research is supported by the National Science Foundation-CREST Award (Contract #HRD-1914751) and the 

Department of Energy/National Nuclear Security Agency (DE-FOA-0003945). 

 

References 
[1]  S. Chen, Y. Ren, D. Friedrich, Z. Yu, J. Yu, “Sensitivity analysis to reduce duplicated features in ANN training for 

district heat demand prediction,” Energy AI, vol. 2, p. 100028, 2020. 

[2]  M. R. Shaeri, R. W. Bonner, “Lightweight and high-performance air-cooled heat sinks,” in Proceedings of the 34th 

Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2018, pp. 224-227. 

[3]  M. R. Shaeri, T. C. Jen, “The effects of perforation sizes on laminar heat transfer characteristics of an array of 

perforated fins,” Energy Convers. Manage., vol. 64, pp. 328-334, 2012. 

[4]  M. Z. A. Khan, M. Aziz, A. T. Wijayanta, “Prediction of heat transfer enhancement of delta-wing tape inserts using 

artificial neural network,” Case Stud. Therm. Eng., vol. 27, p. 101322, 2021. 

[5]  J. Sang, X. Pan, T. Lin, W. Liang, G. R. Liu, “A data-driven artificial neural network model for predicting wind load 

of buildings using GSM-CFD solver,” Eur. J. Mech. B. Fluids, vol. 87, pp. 24-36, 2021. 

[6]  Y. Qiu, D. Garg, L. Zhou, C. R. Kharangate, S. M. Kim, I. Mudawar, “An artificial neural network model to predict 

mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data,” Int. J. Heat 

Mass Transfer, vol. 149, p. 119211, 2020. 

[7]  A. Poro, S. Sarabi, S. Zamanpour, S. Fotouhi, F. Davoudi, S. Khakpash, S. Ranjbar Salehian, T. Madayen, A. 

Foroutanfar, E. Bakhshi, N. S. Mahdavi, F. Alicavus, A. Mazidabadi Farahani, G. Sabbaghian, R. S. Hosseini, A. 

Aryaeefar, M. Hemati, “Investigation of the orbital period and mass relations for W UMa-type contact systems,” 

MNRAS, vol. 510, pp. 5315-5329, 2022. 

 

 

 

 


