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Abstract - In this study, two-dimensional steady-state simulations of laminar natural convection of Rayleigh Benard in square 
enclosure were performed. The enclosure is considered to be completely filled with a yield stress fluid obeying viscoplastic model 
Bingham. The vertical lateral walls are thermally isolated, whereas sinusoidal temperature distributions with different amplitudes and 
phases are imposed over the horizontal walls. Fluid flow and heat transfer characteristics are systematically studied over a wide range 
of Phase deviation ϕ (0- π) and amplitude ration Ɛ (0-1). We have fixed the Rayleigh number (Ra = 105), Prandtl number (Pr = 7), and 
finally the Bingham number (Bn = 0.5). The Navier-Stokes equations, the mass and energy conservation equations, are solved 
numerically using CFD software FLUENT  15. The results shows that the Nusselt number decreases with the increase of the Bingham 
number, and for the large values of the latter the heat transfer is done by conduction. It is also noteworthy that the increase in the phase 
difference and the amplitude ratio leads to the increase in the heat transfer.  
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1. Introduction 

The buoyancy-driven heat convection inside an enclosure has been widely investigated during the last several decades 
[1-2-3]. Natural convection in an enclosure may be seen in various applications such as electronic equipment cooling, 
building cooling and heating, solar heaters, energy drying processes etc. The classical Rayleigh–Benard convection [4] had 
been observed in an enclosure heated from below and cooled from above. Extensive study of the convection inside the 
enclosure has been reported in review articles [5–6-7-8]. One of the many studied cases is holding the horizontal walls 
isothermally at different temperatures while the other walls (vertical walls) are insulated to maintain the adiabatic state, for 
example, [9-10-11-12] investigated natural Rayleigh Benard convection of yield stress fluids. although various 
configurations of heated shaped objects are possible, such as cubic cavity which is totally immersed within yield stress 
fluid [13] sphere [14-15] and cylinder [16]. There is also one of the most classic cases which is a differentially heated 
cavity filled with Bingham Fluids [17-18], where the vertical walls have different temperatures while the other walls (top 
and bottom) are adiabatic.  

The present work aims to investigate a more complicated natural Rayleigh Benard convection in an enclosure with two 
sinusoidal temperature profiles on the top and the bottom walls, the enclosure is considered to be completely filled with a 
flow stress fluid obeying the Bingham model. The results indicate that the Nusselt number decreases with the increase of 
the Bingham number, and for the large values of the latter the heat transfer is done by conduction, also the increase in the 
phase difference and the amplitude ratio leads to the increase in the heat transfer.  

 
2. Numerical Methods 

FLUENT, a commercial CFD software, provides the numerical model. Subject to the suggested boundary conditions, 
the conservation equations are discretized using a finite-volume technique based on the SIMPLEC algorithm. The second-
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order upwind differencing method is used to discretize the equations. Finally, the convergence requirements for 
solving the governing equations are regarded met when the sum of the residuals is less than 10-5. 

 
2.1. Geometry and Boundary Conditions 

fig 1 presents the schematic diagram of the domain which the simulations will be run. Where thermal isolation 
exists between the vertical lateral walls, and the horizontal walls exhibit sinusoidal temperature distributions with 
varying amplitudes and phases. We make certain approximations and simplifying assumptions to reduce and simplify 
the mathematical formulation of the model and facilitate its resolution. Two-dimensional flow is assumed to be 
permanent; fluid flow is assumed to be incompressible and laminar, and finally thermo-physical properties of the fluid 
are constant, except for apparent viscosity, which varies according to the viscoplastic model, the Boussinesq 
approximation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Layout of the simulation domain. 
 

2.2. Mathematical Formulation 
The steady-state conservation equations for mass, momentum, and energy in incompressible fluids are as follows. 

Continuity equation: 
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Momentum equations:            
These equations are translated according to the Navier-Stokes equations. 
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The energy equation: 
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These variables have been used to make the above equations dimensionless  
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Boundary conditions are as follows: 
At the top   u v 0= = , ( )sin 2 x=θ π  

At the bottom of the domain  u v 0= = , ( )sin 2 xθ ε π φ= +  

The vertical walls   u v 0= =  , dT 0
dy

=   

Where Ɛ = AR/ Al is the amplitude of the sinusoidal temperature which is at the bottom and at the top of the cavity, 
with AR being the aspect ratio and AR = H / L et Al = Th – Tc 

The Bingham model is governed by the following equations: 
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Dimensionless Rayleigh number: 
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Dimensionless Grashoff number:  
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Dimensionless Prandtl number: 
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Dimensionless Bingham number: 
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2.3 Validation  
To validate our results, we compared them with those of the literature, namely the work of references [8] and [17]. A 

good argument has been noted between our numerical results and those of the articles [8] and [17]. 
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Fig 2: Comparison of numerical result obtained (left) with [8] (right) of the Effect of Rayleigh number on the isotherms at Ra = 

103, Bn = 0, Pr = 0.7, ɸ = 0 and Ɛ = 1. 
 

Table 1: Nusselt validation [17]  
 Bn = 1 Bn = 3 Bn = 6 Bn = 9 Bn = 18 Bn = 27 

Ra = 105       
Huilgol [17] 3.303 3.263 3.083 2.898 2.402 2.143 
Present work 3.305 3.265 3.083 2.900 2.403 2.140 

 
3 Results and Discussion  
3.1 Effect of Phase Deviation  

Fig 3 shows the variations of streamlines and isotherms with a phase difference ranging from 0 to π. The streamlines 
are in the shape of one cell at ɸ = 0, but the shape of this cell changes and deforms at ɸ =π/4. At ɸ =π /2, we see the 
appearance of a tiny cell on the bottom of the right side, the shape of the streamlines has changed from one cell to two with 
differing forms. The size of the bottom corner cell grows in proportion to the phase difference. When ɸ =π, the flow 
structure in the enclosing halves is two almost similar cells. The isotherms along the top wall are largely conserved over 
the phase deviation variation cycle, whereas the isotherm distributions along the bottom wall change. 
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ɸ = 3 4π  

 
ɸ = π  

Fig 3: Contours of isotherms of Bingham's three-dimensional fluid model  
for Ra = 105; Bn = 0.5 ; Pr = 7; Ɛ = 1. 

 
3.2. Effect of Amplitude 

Fig 4 illustrates the changes of the streamlines and isotherms in terms of the amplitude ratio. The streamlines are in the 
shape of a single cell, but its shape changes and deforms as the amplitude ratio increases. At Ɛ = 0, we noticed that heat 
transfer occurs only the top wall and not the bottom, as Ɛ increases more and more isotherms appear along the bottom wall 
and thus heat transfer across the bottom wall increases. Finally, we can say that the increase of Ɛ improves the heat 
transfer. 

 

      
(a) Ɛ = 0  

 
(b) Ɛ = 0,5 
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(c) Ɛ = 1 

Fig 4 : Contours of isotherms (left) and streamlines (right) of the Bingham fluid 
for Ra = 105 ; Bn = 0,5 ; Pr = 7 ; ɸ = 0 

 
3.3 Heat Transfer Quantification  

The variation of Nusselt number is shown in figs 5 and 6. The results reveal that the Nusselt number drops as the 
Bingham number increases, and that for large values of the latter, heat transmission occurs by conduction. It is also worth 
noting that increasing the phase difference and amplitude ratio increases heat transmission. 

 
Fig 5: Effect of the phase deviation (ɸ) on the average Nusselt for Ra = 105,  

Pr = 0.1 and Ɛ = 1. 
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Fig 6: Effect of the amplitude ratio (Ɛ) on the average Nusselt for Ra = 105, 

 Pr = 0.1 and ɸ = 0. 
 

4 Conclusion 
This work concerns a numerical study of the two-dimensional natural Rayleigh Benard convection of a non-

Newtonian viscoplastic fluid. The viscoplastic behaviour is described by the Bingham model. The two-dimensional 
convective flow considered is confined in a cavity, where vertical walls are thermally insulated and the horizontal walls 
have two sinusoidal temperatures. The Navier-Stokes equations, the mass and energy conservation equations, are solved 
numerically using an industrial numerical simulation code CFD: FLUENT.  

• The Nusselt number decreases with the increase of the Bingham number, and for the large values of the latter the 
heat transfer is done by conduction. 

• The increase in the phase difference leads to the increase in the heat transfer, with regard to the influence of the 
phase deviation on the Nusselt. It is observed that from the values, the heat transfer rate is improved for ɸ = π. 

• Heat transfer increases as the amplitude ratio increases. The heat transfer rate for Ɛ = 1 is higher than in the other 
cases. 
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