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Abstract – The present work numerically investigates the flow of power-law fluids through a square-edged rectangular orifice. This 
study has been carried out for a wide range of power-law index (0.3 – 1.0) and three lateral positions of the orifice (0.5 – 0.75) at a fixed 
Reynolds number (i.e., 20) and aspect ratio (i.e., 0.5). This work aims to understand the influence of the shift of the location of the orifice 
in the lateral direction on the flow characteristics. The new results have been presented in this work in the form of flow patterns, central 
and lateral velocity profiles, and the discharge coefficient. Notably, the flow pattern demonstrates the formation of symmetric and 
antisymmetric flow separation zones in the vicinity of the orifice, depending upon the orifice location, regardless of the power-law index. 
In this work, an effort has been made to analytically derive the equation for the discharge coefficient of non-Newtonian fluids through 
the rectangular channel and presented the same for a wide range of conditions. Results demonstrate that the flow velocities, i.e., centreline 
and lateral velocity profiles are a strong function of the governing parameters and orifice location. The discharge coefficient is seen as 
an increasing function of the orifice location as it shifts in the lateral direction, towards the upper wall of the computational domain. Also, 
a dramatic effect of the power-law index on the discharge coefficient has been observed herein for a particular orifice location. 
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1. Introduction 

In the past several decades, worldwide, in the process industries, for instance, oil, chemical, energy, pharmaceuticals, 
food, etc., the flow generally occurs through a channel/container/pipe/industrial tank, etc. In processing fluids from such 
industrial configurations, it has been learned through the industries that discharging the working fluids through the industrial 
settings is a reasonably complex problem in transport phenomena. It has been experienced from the industries that a 
controlled, accurate, and efficient measurement of the flow rates/discharge coefficient of the working fluids, either 
Newtonian [1 -2] or non-Newtonian [3] (for instance, power-law fluids, Bingham plastic fluids, Hershel Bulkley fluids, etc.) 
is in demand. In particular, this work aims to discuss numerically the flow characteristics of the non-Newtonian fluids, which 
are being considered in industries such as personal care, food, etc. For flow measurements, one of the typical flow meters 
used in the process industries is the orifice meter [1-3]. However, for the orifice meters, a high pumping cost has been noted 
by the engineers due to the higher pressure losses; still, it remains the choice of at least 40% of industries in use because of 
its ruggedness. Literature covers numerous studies investigating Newtonian fluids flow such as air/water through an orifice, 
but the information regarding non-Newtonian fluids is scarce. Thus, predicting the flow of non-Newtonian fluids through 
the orifices remains an active area of research. Some additional advantages of using the orifice as a flow meter can be found 
in References [4-6]. Also, the orifice is preferred in the industries basis on its simple working principal, which is based on 
the pressure drop due to contraction/expansion in its vicinity. It is a kind of differential-pressure-based flow measurement 
device used in industries. Thus, the present work aims to explore the flow of non-Newtonian fluids through the rectangular 
orifice meter for a wide range of conditions.  

 
2. Literature Review and Objectives 

Literature is rich with experimental and numerical work detailing the discharge of Newtonian [1–2, 4-5] and non-
Newtonian fluids [7-11]. However, through rigorous literature review, it has been noted that most of the literature related to 
the orifice is dedicated to the turbulence flows, which supports several realistic conditions; hence the flow discharge 
coefficient is generally thought about as constant. But, with several industrial applications, it has been learned that the laminar 
flow through an orifice is also essential. It is being considered in industries as it represents a functional relationship with the 
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Reynolds number, the shape of the orifice, the location of the orifice, etc. The result predicted from such analysis is 
being utilized in the industries as a precursor to predicting the flow rate, which is the focus of the present work [12]. A 
few exciting review articles based on the flow of Newtonian and non-Newtonian fluids through an orifice have been 
recently added to the literature [13 - 15]. However, a few works of literature directly related to non-Newtonian fluids 
have been discussed in this work to confirm the novelty of the present work.  

Ntamba and Fester [7] experimentally observed the pressure loss coefficient for the flow of Newtonian and non-
Newtonian fluids (i.e., Kaolin, CMC, and Bentonite) through a short square-edged orifice plate for a wide range of 
conditions as 5 ≤ Re ≤ 106, 0.2 ≤ β ≤ 0.7; 0.3 ≤ n ≤ 1. They worked in the flow regimes as laminar, transitional, and 
turbulent using Hershel Bulkley fluids. They discussed the industrial importance of such loss coefficients in piping 
systems. However, in this work, they discussed the importance of laminar flow through short orifices at low Reynolds 
numbers. Importantly, they defined a limiting value of the Reynolds number, i.e., the same for all fluid and aspect ratios 
to demarcate the pure laminar and pure turbulent flow regimes. Later, this work has also been expanded by Chowdhury 
and Fester [8] for the power-law, Hershel Bulkley, and Newtonian fluids for a long sharp-edged orifice. Further, 
Khahledi et al. [9] experimentally observed the flow rate measurement of non-Newtonian fluids, i.e., aqueous CMC 
solution and water-based suspension of kaolin and bentonite through a sharp crested notch, mainly rectangular and V-
shaped. They predicted the laminar flow relationship between the discharge coefficient and Reynolds number with the 
help of a single composite equation for such a system. They also specified the range of the Reynolds number for 
transition and turbulent flows. Subsequently, Rituraj and Vacca [10] conducted both the experimental and numerical 
investigation of the flow of non-Newtonian fluid through a sharp orifice with a small aperture in the laminar regime for 
a wide range of conditions. This work highlighted the importance of sharp orifices of lower diameters ratios in the 
process industries. However, they limited their work to β < 0.2, i.e., generally encountered in dishwashing liquid bottles. 
Recently, Khahledi et al. [11] extended their work to observe the discharge of both Newtonian and non-Newtonian fluids 
from a rectangular tank through three different shapes of the orifice as circular, square and triangular for a wide range 
of conditions as 0.02 ≤ β ≤ 0.05; 0. 10 ≤ Re ≤ 105, 0.36 ≤ n ≤ 1. In this work, they have developed a discharge coefficient 
versus Reynolds number relationship that can be utilized in process engineering and design for flow measurement 
through sharp crested orifices.  

Basis, the above literature survey, it can be noted that though several studies have been done in the field of the flow 
of complex fluids through an orifice, still, the information related to the laminar and incompressible flow of power-law 
and Newtonian fluids through a rectangular shaped orifice is limited in terms of shift of the location of the orifice in the 
channel. Therefore, the present work aims to fill this gap in the body of knowledge. The current work aims to investigate 
numerically the flow characteristics of the power-law (n < 1) and Newtonian fluids (n = 1) flowing through a rectangular-
shaped orifice fitted in a rectangular channel having the aspect ratio as β = 0.5. This work explores the orifice location 
(i.e., Co) at different positions in the lateral direction to the flow field, i.e., 0.5, 0.65, and 0.75. A detailed discussion on 
the influence of the input/governing parameters on the flow fields have been done in this work through numerical 
simulations.  
3. Problem Description and Numerical Strategy 

Figure 1 represents the computational domain, boundary conditions, coordinate systems, etc., for the present work. 
An incompressible power-law fluid with a fully developed velocity profile enters through the inlet plane. The average 
velocity of the fluid has been taken as Uo. The fluid has experienced a sudden contraction and expansion due to the 
fitted rectangular-shaped orifice in the flow domain. Such configuration of the computational domain leads to the 
modulation in the flow and pressure fields, and hence a boundary layer separation occurs. The present numerical model 
assumes the flow to be two-dimensional, steady, and incompressible. Also, the current work has been carried out in the 
forced convective regime and does not exploit the body forces herein. However, in the inertial frame of reference, the 
fluid dynamics (by continuity and momentum) of the present work are governed by the following non-dimensional 
equations [16-17]: 
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Fig. 1. Schematic representation of the computational domain and boundary conditions. 

 
Continuity equation: 0U =⋅∇                                                                                                                                              (1) 

Momentum equation: 1 ( )U
Re

U P  τ⋅ = −∇ + ⋅∇ ∇                                                                                                           (2) 

In this work, the average velocity of the working fluid, Uo, has been used as the velocity scale, and the width of the 
channel, H, has been used as the length scale. In the above Eqns. (1) and (2), U is the non-dimensional velocity field, which 
has been scaled by Uo. Further, Ux and Uy are the velocity components in the x- and y-directions. Also, P represents a non-
dimensional pressure scaled by ρUo

2. The shear stress, τ shown in Eqn. (2) has been non-dimensionalised by m(Uo/H)n, where 
“m” is the power-law fluid consistency index. Notably, the symbol Re demonstrates the usual dimensionless parameters as 
Reynolds number.  

Along with the above model Eqns. (1) – (2), the numerical simulation has been carried out in conjunction with the extra 
stress tensor in regards to the working fluids, defined as [16-17]: 

2 )τ = η (γ D       where    ( )1
2

TU U = ∇ + ∇ D                                                                                                                    (3)  

where η, γ and D are the apparent fluid viscosity, the rate of the strain tensor, and the symmetric part of the velocity gradient 
of the flow field, respectively.                                                                    
The scalar viscosity function )η (γ for the power-law fluids is defined as follows [16-17]: 
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However, the above model Eqns. (1) – (4) has been solved using the following boundary conditions in this work as: 
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At Outlet: 0;=
N
φ∂

∂
 where ϕ is dependent variable as U; N is the unit normal 

At channel and orifice walls: 0; 0x yU U= =  
The present work has four non-dimensional parameters: Reynolds number, Re, power-law index, n, aspect ratio, β, and 

orifice location as Co (normalized by H). A few of them have been defined as follows: 
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This work has been carried out for a fixed value of Reynolds number, i.e., Re = 20, ensuring the flow field to be 
steady and laminar. Further, a wide range of power-law index has been taken herein, which provides the coverage of 
highly shear-thinning fluids (i.e., n = 0.3) to Newtonian fluids (i.e., n = 1). Furthermore, three different values of Co have 
been taken in this work as 0.5, 0.65, and 0.75. Such values demonstrate the three different locations of the orifice in the 
rectangular channel as Co = 0.5 coincides with the centre of the orifice with the channel cross-section, i.e., at Y = 0.5; 
for Co = 0.65, the centre of the orifice will be placed at Y = 0.65 (i.e., a location in between the channel centre and upper 
wall). Similarly, for Co = 0.75, the centre of the orifice will be at Y = 0.75 (i.e., close to the upper channel wall). 

To ensure the fully developed flow in the flow domain, a sufficiently long upstream length, i.e., Lus and downstream 
length, Lds have been chosen herein., see Fig. 1. For the present work, grid sensitivity analysis has been carried out using 
three different grid resolutions as 124121, 254052, 434542 with the mapped grid structure with fine grids close to the 
channel walls to capture the gradient appropriately (details has not been shared for the conciseness of the paper). 
However, basis the velocity and pressure profiles, the grid points as 254052 have been considered in this work to ensure 
the numerical accuracy of the results. Further, this work used the convergence criterion as 10-6. All the governing 
equations and the boundary conditions, has been solved using finite-element-based software COMSOL Multiphysics 
[16-17]. It is important to mention herein that to ensure the accuracy and reliability of the present numerical scheme, the 
numerical solution procedure has been validated with the available related literatures with ± 5.5% deviation [16-17]. 

 
4. Results and Discussion 
4.1. Streamline Patterns  

Figures 2 and 3 represent the typical streamline patterns for highly shear-thinning and Newtonian fluids, 
respectively for a fixed Reynolds number, i.e., Re = 20, and aspect ratio, i.e., β = 0.5 for three different lateral positions 
of orifice, i.e., Co = 0.5 (represents the centre of the orifice at Y = 0.5), 0.65 (represents the centre of the orifice at Y = 
0.65) and 0.75 (represents the centre of the orifice at Y = 0.75). It is interesting to note that the streamline patterns in the 
vicinity of the obstruction region are seen to be significantly affected by the positioning of the orifice in the lateral 
direction, regardless of the fluids, i.e., shear-thinning and Newtonian, see Figs. 2 and 3. Notably, a distortion in the 
streamline pattern has been observed close to the obstruction region as the fluid experiences a sudden expansion in the 
flow direction [17]. Such experience leads to cause an adverse pressure gradient resulting in the separation zones [16-
17]. Along with positioning of the orifice in the lateral direction, such separation zones show a substantial dependency 
on the type of fluids studied in this work. It is worth mentioning herein that the two separation zones have been observed 
for the case of Co = 0.5 and 0.65, see Fig. 2(a) and (b); and Fig. 3(a) and (b). On the other hand, for Co = 0.75, only one 
separation zone has been observed in the computational domain, which is at the lower wall of the channel, Figs. 2(c) 
and 3(c). In particular, for Co = 0.5, a symmetric flow separation zones, i.e., at the lower and upper walls of the channel, 
separation length, Lr = 1.48, see Fig.2(a), can be seen for either highly shear thinning fluids (see, Fig. 2a) or Newtonian 
fluids (see, Fig. 3a). On the other hand, for the orifice location of Co = 0.65, asymmetric separation zones have been 
observed close to the upper and lower walls in the vicinity of constraint region. Interestingly, the separation zone close 
to the channel upper wall is significantly smaller (Lr = 0.254) than the separation zones at the lower wall (Lr = 2.51), see 
Fig. 2(b). Moreover, for Co = 0.75, only one separation zone has been observed at the lower wall of the channel with Lr 
= 3.30, see Fig. 2(c) as also discussed above. For the monitoring of the separation zones, our previous research article 
can be referred [16-17], see Fig. 2(a). 

From Fig. 3, for the Newtonian fluids, i.e., n = 1.0, the distortion in the form of symmetry and asymmetry in the 
flow field has been seen to be almost similar to Fig. 2. However, the separation zone length, Lr for the Newtonian fluids 
is found to be significantly smaller than the highly shear-thinning fluids, n = 0.3 (Fig. 2). Importantly, for the shear-
thinning fluids (n ≤ 1), no separation zones have been observed in the upstream region regardless of the orifice 
positioning and studied parameters. On the other hand, for the Newtonian fluids, separation zones, though feeble, have 
been noted in the upstream region of the orifice for all Co. This is due to the reason that the Newtonian fluids are viscous 
than the shear-thinning fluids and offer more resistance to movement, and hence get sticks to the corners in the upstream 
region of the channel. On the other hand, the shear-thinning fluids (n ≤ 1), being less viscous, moves conveniently and 
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do not form any separation zones in the upstream region. Due to geometric constraints, the separation zone width is similar 
for both Newtonian and shear-thinning fluids.          

 
Fig. 2. Streamline patterns for three different lateral position of the orifice at Re = 20, β = 0.5 for highly shear-thinning fluids, n = 0.3. 

 
4.2. Centreline Velocity Profile  

Figure 4 represents the centreline velocity profile, Uc, for two lateral positions of the orifice in the channel as Co = 0.5 
and 0.65 at Re = 20, β = 0.5, and for three values of the power-law index as n = 0.3, 0.6 and 1.0 at Reynolds number, Re = 
20 and aspect ratio, β = 0.5. A strong influence of the lateral positions of the location of the orifice can be observed in Figs. 
4(a) and (b). Regardless of the location of orifice and constrictions in the channel, a sharp peak in the axial velocity 
profile, Uc has been noted in Figs. (a) and (b), due to the obstruction in the fluid field leading to the Bernoulli effect. Notably, 
it has also been observed that, in such figures, the fluid velocity has also been increased with a gradual increment in the 
power-law index due to the dominance of the viscous forces. In other words, the Newtonian fluid velocity is higher than the 
non-Newtonian fluids, as also reported in Ref. [18]. Importantly, it is interesting to note that as the location of the orifice 
approaches the upper wall of the channel, ~ 16% decrease in the maximum centreline fluid velocity has been observed 
between Co = 0.5 and 0.65 at Re = 20, β = 0.5, see, Fig. 4(a) and (b). Such comparison with Co = 0.75 further suppresses the 
velocity profile (the figure has not been included for the conciseness of the manuscript). Thus, suffice it to say here that a 
significant influence of the placement of the orifice location in the channel on the centreline velocity profile has been 
experienced.  
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Fig. 3. Streamline patterns for three different lateral position of orifice at Re = 20, β = 0.5 for Newtonian fluids, n = 1.0. 
 

 
Fig. 4. Centreline velocity profile for three lateral positions of orifice in the channel at Re = 20 and β = 0.5 for (a) Co = 0.5 (b) Co = 

0.65. 
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4.3. Lateral Velocity Profile 

Figure 5 shows the lateral velocity profile, Ux, for two values of the orifice location as Co = 0.5 (Fig. 5a) and 0.65 (Fig. 
0.65 (Fig. 5b) at Re = 20, β = 0.5 and for three values of the power-law index as n = 0.3, 0.6 and 1.0. The velocity profiles 
profiles shown in Fig. 5 have been plotted at a particular axial location, i.e., X = 12.14 in the vicinity of the orifice. It is 
is essential to mention that the negative velocities have been noted in the lateral direction regardless of orifice location and 
power-law index values. Such negative velocities are the representation of the presence of the separation zones. The length 
in the lateral direction up to negative velocity can be called the width of the separation zones; see Fig. 5(a). Such length is 
seen to be longer for the lower values of the power-law index, i.e., 0.3, demonstrating the high degree of the shear-thinning 
of the fluid. In contrast, such length is shorter for the Newtonian fluids, n = 1.0. It is also important to mention herein that 
the switch in the velocity profile, regardless of orifice location and power-law index at Re = 20 and aspect ratio, β = 0.5, can 
be attributed to the conservation of momentum at the location. Fig. 4 shows the maximum centreline velocity for the highest 
power-law index values as n = 1.0, i.e., Newtonian fluid. Furthermore, a significant effect of the constraint's location in the 
fluid flow can be noted regarding the separation width. For instance, a symmetric flow separation zone can be seen in case 
of Co = 0.5 (see Fig. 5a), while it is asymmetric in the case of Co = 0.65 for a given power-law index, Reynolds number, and 
aspect ratio, Fig. 5(b). However, at the lower wall of the channel, the flow separation zone is seen to be longer as the orifice 
shifts from Co = 0.5 to 0.75 (figure not shown). 

 
Fig. 5. Centreline velocity profile for three lateral positions of orifice in the channel at Re = 20 and β = 0.5 for (a) Co = 0.5 (b) Co = 

0.65. 
 

4.4. Discharge Coefficient, Cd 
              This section presents the variation in the discharge coefficient, Cd, of the orifice with the power-law index at Re = 
20 and β = 0.5, for three different lateral positions of the orifice as Co = 0.5, 0.65, and 0.75 in Fig. 6. The discharge coefficient 
for the non-Newtonian fluids has been calculated by the following equation, which has been derived from the basic Bernoulli 
equation: 

Discharge coefficient through orifice, ( )
( )( )

2 2

2 *

6 2 1 1 1
4 3 3 2d

n
C

n n P
β

β
+ −

=
+ + ∆

……………………………..             (7) 

where, oH Hβ = , i.e., aspect ratio and ( )* 22 oP P Uρ ∆ = ∆  . 
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For a fixed, power-law index, n, Reynolds number, Re, and aspect ratio, β, the discharge coefficient is seen to be an 
increasing function of the shift of orifice location in the lateral direction. Such an effect is more pronounced 
0.65 and 0.75. For instance, at n = 0.6, the difference between the discharge coefficient of Co = 0.65 and 0.75 is ~17%. 
contrast, for Co = 0.5 and 0.65, it is ~ 3.8%, see Fig. 6. Such observation can be attributed to the asymmetric flow field 
the case of Co = 0.65 and 0.75. Moreover, for a given value of the orifice location, first, the discharge coefficient 
up to ~ n ≤ 0.6, for n > 0.6, it decreases gradually till n = 1, see Fig. 6. This complex dependence of discharge coefficient 
the power-law index may be attributed to the interaction of non-linear terms of the momentum equation, i.e., the inertial 
term, which is scaled by Uo

2, and the viscous term, scaled by Uo
n, can be attributed to the complex interplay between the 

scaling factor of momentum equation. The complex interplay between the two scaling factors leads to the complex 
dependency of the discharge coefficient on a power-law index, as noted in Fig. 6. 

 
Fig. 6. Variation of Drag Coefficient with Power-law index at Re = 20 and β = 0.5 for three values of Co = 0.5, 0.65 and 0.75. 

 
5. Conclusions 

The present work numerically investigates the influence of the shift of the orifice location in the lateral 
direction on the flow of non-Newtonian fluids, i.e., power-law fluids for a given Reynolds number (i.e., 20) 
and aspect ratio (i.e., 0.5). This work has been carried out for a wide range of power-law index (n < 1), 
including the Newtonian fluids, i.e., n = 1.0 and three lateral locations of the orifice as Co = 0.5, 0.65, and 
0.75. The new extensive results have been presented in the form of streamline patterns, velocity profiles, and 
discharge coefficients through the orifice. Results show a strong influence of orifice location (Co) and fluid 
behaviour index (n) on the flow characteristics and discharge coefficient (Cd). In particular, symmetric and 
asymmetric separation zones have been noted close to channel walls in the vicinity of constriction region for 
a fix orifice location, regardless of the power-law index and Reynolds number. The maximum centreline 
velocity profile decreases with the shift of the orifice location close to the upper wall. The discharge coefficient 
also increases with an increase in Co. A dramatic effect in terms of an increase and decrease in the discharge 
coefficient with power-law index (n) has been noted in this work, regardless of orifice location and Reynolds 
number in this work.  
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Nomenclature 

Cd discharge coefficient, dimensionless 
Ho width of the orifice, mm 
H channel width, m 
Lus length of the upstream region, m 
Lds                             length of the downstream region, m 
Lr                   location of the reattachment point, dimensionless 

γ  rate of strain tensor, dimensionless 

m fluid consistency index, dimensionless 
n                    power-law index, dimensionless 
N unit normal vector, dimensionless 
Po                  outlet pressure at the channel exit, Pa 
ρ density of fluids, Kg/m3,  
Re                 Reynolds number based on the unobstructed channel width H, dimensionless 
η scalar viscosity function, dimensionless 
t orifice plate thickness, mm 
τ deviatoric stress tensor, dimensionless 
β Ho/H 
 u                   axial velocity in x-direction, ms-1 

U                  velocity vector, dimensionless   

Uo                average fluid velocity, ms-1
        

Ux                       axial velocity in x-direction [= u/Uo], dimensionless   
Uy                          axial velocity in y-direction [= v/Uo], dimensionless     

 v                    axial velocity in y-direction, ms-1 
x, y cartesian coordinates 
X, Y cartesian coordinates, dimensionless 
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