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Abstract - We analyze the modulation of heat flux by particle thermal feedback in a turbulent shearless flow by employing a recently 

introduced decomposition of the velocity-temperature correlation in terms of   particle velocity and temperature time derivative 

correlations. The results of a set of Eulerian-Lagrangian point-particle direct numerical simulations (DNSs) at a Taylor microscale 

Reynolds number equal to 56 and with the same volume fraction is used to reveal the action of thermal feedback in a wide range of 

thermal Stokes number and Stokes numbers. The results show that particle heat flux is influenced by thermal feedback more than fluid 

convective heat flux and they act in the opposite way in two-way coupling regime. We also discuss why global particle contribution to 

the heat flux ratio behave in a certain way and what statistics can attenuate or enhance this ratio under different particle inertia and 

thermal inertia. 
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1. Introduction 
Suspension of solid particles, bubbles, or liquid droplets within a turbulent fluid flow can be of importance in many 

natural and industrial phenomena, such as water droplets in clouds [1,2] and solid fuel combustion processes [3]. There 

have been numerous studies to elucidate the physics behind particle suspension and its interplay with the carrier flow in 

different turbulent flows. However, in the most complex cases, where the dynamical and thermal behaviour of the discrete 

phase are simultaneously under investigation, there have been few numerical, analytical, and experimental works to date. 

This physical problem becomes even more complex when both phases are two-way coupled, and the carrier flow is 

thermally and dynamically modulated by the particle backreactions. Meanwhile, due to the difficulty in accurately 

measuring inertial particle velocity and temperature, even using available advanced experimental tools, Direct Numerical 

Simulation (DNS) is alternatively used to further the knowledge of such flow regimes. Thanks to the growing advances in 

computing tools in recent decades, DNS has become the main tool to investigate particle-laden turbulent flows across 

various disciplines, yet it has been limited to low and moderate Reynolds numbers. Heat transfer in the two-way coupling 

regime has mostly been investigated in unbounded statistically homogeneous turbulent flows to reveal the effect of particle 

feedback on fluid temperature statistics and inter-scale heat transfer [4-6]. Yet, in the literature, there have been few works 

on the same problem when the temperature field is inhomogeneous and statistically unsteady. 

However, we recently studied an anisothermal turbulent flow laden with particles, such that a thermal mixing layer 

develops in a quasi-self-similar way between two homogeneous and isotropic homothermal zones. We analyzed the 

dynamical and thermal effects of inertial particles and the flow Taylor microscale Reynolds number in both one and two-

way coupling, considering collisionless [7] and collisional regimes [8]. Furthermore, a new decomposition has been 

introduced in [9] to analyze the effect of particles on heat flux statistics in terms of particle and fluid velocity temperature 

correlations, and particle time derivatives. However, in that study, this decomposition only considered the particle effect in 

one-way coupling. As an extension, we aim to investigate the effect of particle thermal back-reaction by using the same 

decomposition and making comparisons between different two-way coupled statistical quantities with those of the one-way 

coupling regime. Accordingly, this study is more focused on the effect of particle back-reaction on the heat flux statistics. 

Note that this problem is intrinsically non-trivial even for the one-way coupling regime, but this decomposition helps us to 
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formulate the ratio between particle to fluid heat fluxes and provides a way to gain new knowledge of particle effects in the 

two-way coupling regime that can be useful for further studies in two-phase flows, especially when heat transfer is the core 

of the investigation.  

 

2. Physical model 
The objective of this study is to investigate the heat transfer between two homogeneous zones with different 

temperatures, 𝑇1 and 𝑇2 < 𝑇1, of a particle-laden flow with homogeneous and isotropic velocity fluctuations. We use 

point-particle Eulerian-Lagrangian direct numerical simulations. In Eulerian frame, the Navier-Stokes equations are 

solved for the carrier flow with a divergence-free velocity field u(t,x), pressure field p(t,x) and a passively advected 

temperature field T(t,x), while individual particles are tracked along their Lagrangian path. Under these assumptions, 

the dynamics of fluid phase is governed by incompressible Navier-Stokes equations which are given by 

 
𝜕𝑗𝑢𝑗 0

𝜕𝑡𝑢𝑖 + 𝑢𝑗𝜕𝑗𝑢𝑖 −(1 𝜌0⁄ )𝜕𝑖𝑝 + 𝜈𝜕𝑗𝜕𝑗𝑢𝑖 + 𝑓𝑢,𝑖

𝜕𝑡𝑇 + 𝑢𝑗𝜕𝑗𝑇 𝜅𝜕𝑗𝜕𝑗𝑇 + (1 𝜌0⁄ 𝑐𝑝0)𝐶𝑇

 

(1)
(2)
(3)

 

 

where 𝜌0 denotes fluid density, and 𝑐𝑝0  and 𝜈  are the isobaric specific heat capacity and fluid kinematic viscosity 

respectively. 𝑓𝑢,𝑖 is an external body force introduced to maintain turbulent fluctuations in a statistically steady state, and 

𝐶𝑇 is the heat exchanged per unit time and unit mass with particles, i.e. particle thermal feedback on the carrier flow. 

Similar to previous works (e.g. [7-9]), we do not consider the force exerted by particles on the fluid: only fluid temperature 

field is two-way coupled with particles, and momentum exchange occurs only under one-way coupling regime. This 

assumption yields in a dilute regime and in our problem because it has been found that momentum feedback has a minor 

thermal effect on fluid temperature statistics [5]. Discrete phase is modeled as a monodisperse solid sphere of radius R 

smaller than carrier flow Kolmogorov lenghtscale 𝜂. This small material point particle has the density 𝜌𝑝 much higher than 

the fluid density, and isobaric specific heat capacity 𝑐𝑝𝑝. The dynamics of the particulate phase obeys the equation of 

motion proposed by Gatignol 1983, Maxey and Riley 1983, [10]. It is also assumed that the Stokes drag force is the 

dominant term in the Maxey–Riley equation for the motion of small particles in a fluid [10]. Analogous to the equation of 

motion of a rigid sphere in fluid, an equation for the particle temperature is derived under the same hypothesis, so that the 

dynamics of each individual particle is governed by the following equations in the Lagrangian reference frame 

 

𝑑

𝑑𝑡
{

𝑋𝑝(𝑡)

𝑉𝑝(𝑡)

𝛩𝑝(𝑡)

} = [

0 1 0
0 −1 𝜏𝑣⁄ 0

0 0 −1 𝜏𝜗⁄
] {

𝑋𝑝(𝑡)

𝑉𝑝(𝑡)

𝛩𝑝(𝑡)

} + [

0
1 𝜏𝑣⁄ 𝑢(𝑡, 𝑋𝑝)

1 𝜏𝜗⁄ 𝑇(𝑡, 𝑋𝑝)

] (4) 

 

where 𝑋𝑝, 𝑉𝑝, and 𝛩𝑝 are position, velocity and temperature of the p-th particle, respectively, and define the state of the 

particle. Here 𝜏𝑣 and 𝜏𝜃 are the momentum and thermal relaxation times, given by 

 

𝜏𝑣 =
2

9

𝜌𝑝
𝜌0

𝑅2

𝜈
, 𝜏𝜗 =

1

3

𝜌𝑝𝑐𝑝𝑝
𝜌0𝑐𝑝0

𝑅2

𝜅
 (5) 

 Note that any direct particle-particle interaction is excluded and there is no external field like gravitational field, acts on 

particles. The particle thermal feedback per unit time and unit volume is given by 

 

𝐶𝑇(𝑡, 𝑥) =
4

3
𝜋𝑅3𝜌𝑝𝑐𝑝𝑝 ∑

𝑑𝛩𝑝(𝑡)

𝑑𝑡

𝑁𝑝

𝑝=1

𝛿[𝑥 − 𝑋𝑝(𝑡)] (6) 

 

where 𝑁𝑝 is the total number of spherical inertial particles and 𝛿(⋅) is the Dirac delta function. 

To conduct numerical experiments on this problem, the governing equations are solved in a parallelepiped 

computational domain with dimensions 𝐿1 = 𝐿2 and 𝐿3 = 2𝐿1 along the 𝑥1, 𝑥2, and 𝑥3 directions. The temperature 

distribution is initialized by setting the temperature equal to 𝑇1 in the half-domain where 𝑥3 < 𝐿3 2⁄  and temperature 

equal to 𝑇2 in the half-domain where 𝑥3 > 𝐿3 2⁄ . Periodic boundary conditions are imposed to the velocity field on all 
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faces of the computational domain, while temperature field, which is intrinsically non periodic, is decomposed into a mean 

linear steady part and a fluctuating part, to which periodic boundary conditions can be applied, as described in detail in [7]. 

Additionally, for the sake of consistency with physics of the two-phase flow, any particles that may exit the computational 

domain must be reintroduced on the opposite side with the same velocity and fluctuating part of the temperature. The 

governing equations are all non-dimensionalized by using 𝐿1 = 𝐿1 2⁄ 𝜋 as reference length, a reference velocity which is 

deduced from the imposed kinetic energy dissipation rate 휀 , and the temperature difference 𝑇1 − 𝑇2  as reference 

temperature [7]. The flow is forced on a single length-scale, and the linear deterministic forcing, which allows to control  

the forced length scale and the energy injection rate, is used, as in [5, 7, 9]. To make the results more physically significant, 

the Taylor-microscale is used as the reference length in the definition of the Reynolds number instead of the domain size 

𝐿1 = 𝐿1 2⁄ 𝜋. In the dimensionless form, the flow is governed by the Reynolds number 𝑅𝑒𝜆 = 𝑢′ 𝜆 𝜈⁄ , the Prandtl number 

𝑃𝑟 = 𝜈 𝜅⁄ , and the particle-to-fluid heat capacity ratio 𝜑𝜗 = 𝜑 (𝜌𝑝𝑐𝑝𝑝) (𝜌0𝑐𝑝0)⁄ , where 𝜑 is the particle volume fraction. 

In dimensionless form, particle dynamics is determined by the ratio between their relaxation times and the flow timescales. 

To characterize the particle dynamics in terms of local fluctuations of fluid state, the Kolmogorov timescale 𝜏𝜂 =

(𝜈 휀⁄ )1 2⁄ is used instead of the large-scale time used in the adimensionalization. Thus, the Stokes number 𝑆𝑡 = 𝜏𝑣 𝜏𝜂⁄ and 

the thermal Stokes number 𝑆𝑡𝜗 = 𝜏𝜗 𝜏𝜂⁄  are used to describe the particle dynamical and thermal behavior. A fully 

dealiased pseudospectral method, using the 3/2-rule, was employed to discretize the spatial domain of the fluid phase 

equations (2-3). Interpolation of fluid velocity and temperature at particle positions and computation of the particle thermal 

feedback (6) were carried out using a recent numerical method [11, 12] based on inverse and forward non-uniform fast 

Fourier transforms with a fourth-order B-spline basis. Integration in time was performed for both the carrier flow equations 

(2-3) and the particle equations (4) using a second order exponential integrator. More details about the numerical method 

and flow setup can be found in [7] and [11].  

All the results we present come from simulations carried out using 2562 × 512  Fourier modes (after dealising, 

3842 × 768 grid points in physical space) with a volume fraction 𝜑 = 4 × 10−4  and a particle to fluid density ratio 

𝜌𝑝 𝜌0⁄ = 1000 at 𝑅𝑒𝜆 = 56. Particle size and number are determined by the Stokes number. We consider the Stokes and 

thermal Stokes number as independent parameters, so that the particle specific heat is adjusted accordingly. The thermal 

Stokes number ranges from 0.2 to 10 and the Stokes number from 0.2 to 6. In dimensionless variables, the domain is 2𝜋 ×
2𝜋 × 4𝜋, the root mean square of velocity fluctuations is 𝑢′ = 0.59, the integral scale and Taylor microscale are 𝑙 = 0.4 

and 𝜆 = 0.226, respectively, while the Kolmogorov timescale is 𝜏𝜂 = 0.098.      

    

3. Correlation decomposition 
Given the statistical inhomogeneity and unsteadiness of the temperature, in the following we consider conditional 

averages at a given time and position 𝑥3 along the inhomogeneous direction, i.e., we define, for any function f of the state 

of the particle, 

⟨𝑓⟩𝑝 = ⟨𝑓|𝑡, 𝑥3⟩𝑝,  

where ⟨⋅⟩𝑝  is the statistical average and we define the fluctuation of f as 𝑓′ = 𝑓 − ⟨𝑓⟩𝑝 . The heat flux across the 

inhomogeneous layer, i.e. in direction x, is 

�̇� = 𝜆
𝜕⟨𝑇⟩

𝜕𝑥
+ 𝜌0𝑐𝑝0⟨𝑢′𝑇′⟩ + 𝜑𝜌𝑝𝑐𝑝𝑝⟨𝑉′𝑝𝛩′𝑝⟩𝑝  

where the last term is the contribution of particles motions, which is the focus of this work. We now express the average 

the heat flux in terms of the time derivatives of particle velocity (i.e., the particle acceleration) and temperature. By 

subtracting from (4) its conditional average, the particle temperature and velocity fluctuations can be expressed in terms of 

the fluctuations of the time derivatives, i.e., 

 

𝑉′𝑝,𝑖 = 𝑢′ − 𝜏𝑣�̇�′𝑝,𝑖 (7) 

𝛩′𝑝,𝑖 = 𝑇′ − 𝜏𝜗�̇�′𝑝 (8) 

where fluid velocity and temperature are to be computed at particle position. In the following, we will skip the apex from 

all moments that are second order or higher to keep notations simple. Following [9]. by multiplying equations (7) and (8) 

and taking the conditioned statistical average, we obtains the following expression of the particle velocity-temperature 

correlation 

⟨𝑉𝑝,𝑖𝛩𝑝⟩𝑝 =
⟨𝑢𝑖𝑇⟩𝑝 − 𝜏𝑣⟨�̇�𝑝,𝑖𝑇⟩𝑝 − 𝜏𝜗⟨𝑢𝑖𝛩�̇�⟩𝑝 + 𝜏𝑣𝜏𝜗⟨�̇�𝑝,𝑖�̇�𝑝⟩𝑝 (9) 
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which expresses the particle contribution to the convective heat flux. This correlation can be conveniently divided by the 

fluid temperature-velocity correlation to obtain 

⟨𝑉𝑝,𝑖𝛩𝑝⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

= 1 − 𝜏𝑣

⟨�̇�𝑝,𝑖𝑇⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

− 𝜏𝜗

⟨𝑢𝑖𝛩�̇�⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

+ 𝜏𝑣𝜏𝜗

⟨�̇�𝑝,𝑖�̇�𝑝⟩𝑝
⟨𝑢𝑖𝑇⟩𝑝

 (10) 

This ratio relates, apart for a constant coefficient (the particle to fluid heat capacity), the particle and fluid contributions to 

the Nusselt number (see [7]). In this way, we have decomposed the particle contribution to the heat flux in terms of the 

correlations between the particle derivatives and between them and the fluid velocity and temperature fluctuations. The 

particle derivatives account for the instantaneous heat exchanges between the two phases and strongly depend on both 

relaxation and thermal relaxation times, which also explicitly appear as coefficients in the decomposition. 

 

4. Results and discussion 
The decomposition (9) has been used in [9] in the two-way coupling regime for a wide range of Stokes and 

thermal Stokes numbers. Here, we aim to elucidate the role of particle feedback by analysing the flow at the same 

Reynolds number. In the flow configuration there is only one non homogeneous transport direction, the one parallel to 

the mean temperature gradient, so that we will skip the index. To comprehend how particle feedback modifies the fluid 

temperature fluctuations and, consequently, the fields experienced by the particles, we present the decomposition in 

terms of the ratios between the three terms of the decomposition (9) in the two-way coupling and the same terms in the 

one-way coupling at the same Reynolds and Stokes/thermal Stokes numbers. Since the flow is statistically almost self-

similar [7], all data presented refer to the central sublayer of the interaction region, where the mean temperature and 

heat flux are largest. 

Figure 1(a) illustrates the particle and fluid velocity-temperature correlations. Since particles tend to accumulate in regions 

with high temperature gradients [5, 13], particle back-reaction tends to reduce fluid temperature gradients. Therefore, it is 

not surprising that the fluid velocity-correlation is reduced, and this reduction increases with particle thermal inertia, i.e., 

with the thermal Stokes number. This effect is more pronounced when the Stokes number is of order one because particle 

clustering is more intense. However, for 𝑆𝑡𝜗 ≫ 1 the relative reduction seems to be independent of 𝑆𝑡. Only for very high 

Stokes numbers is there a minor increment in fluid heat flux when 𝑆𝑡𝜗 ≪ 1, with a maximum around 𝑆𝑡𝜗 ≃ 0.5. In such 

situations, we can speculate that particle motion decorrelates from fluid motions, allowing particles to transfer heat 

between eddies at very different temperatures easily and frequently. However, if particle thermal inertia becomes very 

large, the heat transfer becomes very slow, so the damping effect prevails as particles cross multiple fronts, while in the 

opposite limit, a vanishing particle thermal inertia produces no heat transfer, and thus the maximum effect is seen at 

intermediate thermal inertia. On the contrary, as far as particle heat flux is concerned, two-way coupling always increases 

the particle velocity-temperature correlation. However, for small Stokes numbers, the effect is negligible and almost 

independent of the thermal Stokes number, while a significant increase is observed when 𝑆𝑡 exceeds a certain threshold. 

Indeed, feedback reduces the particle-to-fluid temperature difference, thus making the variation of particle temperature 

slower. This allows particles, which can cross eddy borders in the inhomogeneous direction, to carry their own enthalpy 

over longer distances. The effect of thermal feedback on the overall heat flux depends on the particle-to-fluid heat capacity 

ratio 𝜑𝜗. At the simulated volume fraction, 4 × 10−4 the heat capacity of particles is larger than that of the fluid, 𝜑𝜗 ≃
1.664, and thus the overall heat flux is increased by the particle feedback. 
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Fig. 1: Ratio between (a) fluid and (b) particle velocity-temperature correlation in one- and two-way coupling regimes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 

2: (a) Ratio between normalized particle velocity and temperature derivative correlation and (b) normalized fluid 

velocity-particle temperature derivative correlation in one- and two-way coupling regimes. Legend as in Figure 1. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: (a) Particle acceleration-temperature correlation normalized with fluid velocity-temperature correlation, and (b) 

Ratio between particle temperature derivative variance in one- and two-way coupling regimes. Legend as in Figure 1. 

 

We can now analyse the three terms on the right-hand side of equation (9) Note that all these terms are negative, so that the 

first two actually build the correlation while the third one tends to damp it [7]. Indeed, a positive velocity fluctuation 

produces a positive temperature fluctuation, because, as intuitive, the particle is moving in a region colder in the average, 

but consequently a negative temperature derivative. A similar simple argument cannot be used for correlation involving 

particle acceleration, even if higher accelerations are expected for particles which are in the higher strain zones [14], 

because the velocity field is isotropic and no preferential direction is present. Figure 2(a) shows the acceleration-

temperature derivative correlation, last term of equation (9), which increases with 𝑆𝑡𝜗, with a minor dependence on 𝑆𝑡. 
This contributes toward a reduction of the particle heat flux, which, however, can be mainly appreciable for large Stokes 
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and thermal Stokes numbers, because the term is multiplied by the product of the relaxation times, 𝜏𝑣𝜏𝜗, so that it could 

become relevant and maybe dominant only for very large 𝑆𝑡 and 𝑆𝑡𝜗. However, for any given Stokes number, i.e. for any 

fixed 𝜏𝑣, it never dominates the other ones, at least up to 𝑆𝑡 = 6. Only if the ratio  𝜏𝜗 𝜏𝑣⁄ = 𝑆 𝑡𝜗 𝑆⁄ 𝑡is kept fixed, it could 

possible to observe a reduction in the heat flux. This could explain the reduction in heat flux observed in some flow 

configurations [15]. 

Figure 3(a) illustrates the first term in the decomposition, and shows that in this correlation particle feedback has almost no 

influence. Indeed, since particles are momentum one-way coupled only, fluid velocity and particle accelerations are 

independent from any thermal effect, and the only effect of thermal feedback is on T. The main effect depends only on 

particle inertia, which makes particle motion gradually to become independent from fluid, and thus reduces the correlation  

⟨�̇�𝑝𝑇⟩𝑝
. This implies that the effect of the two-way coupling is to increase the sum of the last two terms in (9), as to 

overcome the observed reduction in ⟨𝑢𝑇⟩𝑝. Since their sum is equal to −𝜏𝜗⟨𝑉𝑝�̇�𝑝⟩𝑝
, we can infer that thermal feedback 

tends to increase the modulus of the correlation between particle velocity and temperature derivative. At the same time, we 

can observe that the variance of particle temperature derivative is always reduced by thermal feedback. This, which can be 

attributed to the reduction in the difference between the temperature of the particle and of the surrounding fluid operated by 

the thermal feedback on the carrier fluid phase, is more marked at higher thermal Stokes number and when the Stokes 

number is of order one. In this situation the smoothing of the fluid temperature gradient where particle cluster can be the 

explanation. 

In conclusion, we have observed that thermal feedback produces an overall increase of the heat flux, which is due to the 

enhancement of particle velocity-temperature correlation, which overcomes the reduction of the fluid one due to the 

smoothing of fluid temperature gradients and variance. This effect is mainly generated by the increased correlation 

between the particle velocity and its time derivative. This effect, which highlights the importance of the temperature path 

history, is further enhanced by the presence of 𝜏𝜗as coefficient. Further insight could be achieved by looking at all terms in 

the enthalpy and velocity-temperature balance equations. 
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