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Abstract 
Turbulent drag on flow structures, whether in air or water, represents a serious impediment to realizing flow efficiency 

for atmospheric and oceanic structures where there is a serious need to optimize energy expenditures. New research and 

technology have sought to go beyond mere understanding and characterization of flow structure boundary layers towards 

actual manipulation of them. Such state-of-the-art flow technology relies on high-resolution models which allow prediction 

and understanding of boundary layer spatio-temporal eddy structure. Machine learning modeling based on classification tree 

modeling and manifold alignment is performed as a statistical way of providing insight into flow similarity over both small 

and large-time scales for the time varying boundary layer eddy structure.  

Flow abundance values for velocity fluctuations in the mean flow direction and particle concentration are estimated for 

a sinusoidally forced flow field containing medium size particles of size 280 microns. This is done use large eddy simulation 

data cubes which capture the boundary layer and upper free stream turbulent structure over a single sinusoidal phase at 15◦ 

increments. The t-distributed stochastic neighbor embedding, locality preservation projection mapping, and 

multidimensional scaling are used to estimate low rank embeddings for velocity and concentration depth profiles over the 

boundary layer in the simulation data cubes. Consecutive two-dimensional latent space embeddings or manifolds of 

consecutively occurring velocity and concentration data sub-cubes demonstrate topologies which can be compared via 

Procrustes analysis, a form of manifold alignment. Rotation, translation, and size scaling of one data cube manifold is 

performed with respect to the data cube manifold occurring right after it in time with a mean square-based dissimilarity value 

calculated for the pair.  

Initial results show that the velocity abundances from all decompositions have high dissimilarity values throughout the 

wave cycle.  The multidimensional scaling and locality preserving projection velocity abundances demonstrate small dips in 

dissimilarity at 0-15◦ and 180–195◦ phase transition intervals which are time periods of low sinusoidal turbulent shear stress.  

The dissimilarity curves for the t-distributed stochastic neighbor embedding velocity abundances are noisy and do not 

demonstrate strong evidence of local minimum values at this point, suggesting a lack of sensitivity to wave cycle turbulent 

dynamical changes. The locality preservation projection and multidimensional scaling based-concentration abundances carry 

high dissimilarity values throughout the sinusoidal phase cycle except at two temporal phases of 0-15◦ and 180–195◦. The 

low dissimilarity is thought to be due to extremely low stress occurring during the beginning of the wave cycle and flow 

reversal which fosters topological similarity over the small 15◦ phase time scale. The two low dissimilarity curve values 

occurring over the first 180◦ of the complete wave cycle suggests a phase asymmetrical turbulent response, with the second 

part of the complete 360◦ degree cycle being less dissimilar than the first part.  

Classification tree analysis of manifold learning abundance values for concentration and velocity in the mean flow 

direction provide comprehension of the nonlinear relationship of latent space abundance values to 12 distinct time phase 

intervals equally dividing the 360◦ phase time scale. Mode classification trees show how segmented areas of manifold 

learning based-latent space are related to one another via the tree graph, ultimately leading to associations with specific flow 

forcing phase time intervals. Preliminary results suggest that different manifold learning decompositions have different tree 

graph structures with a tendency for the t-distributed stochastic neighbor embedding and locality preservation projection to 

possess a concentration-based root node, while the multidimensional scaling always produces a velocity abundance-based 
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root node. The second order bifurcation for the tree graph for the locality preserving projection and t-distributed stochastic 

neighbor embedding tends to have only velocity abundance-based nodes while the same bifurcation for multidimensional 

scaling has both velocity and concentration abundance nodes.  

Preliminary results also suggest that the t-distributed stochastic neighbor embedding maps continual maximum values 

of concentration and velocity abundances toward the first 180◦ part of the 360◦ phase cycle. On the other hand, the locality 

preserving projection tends to map continual maximum and minimum values of concentration and velocity abundances 

toward the second 180◦ part of the 360◦ phase cycle. This is irrespective of the type of root node. Multidimensional scaling-

based decision trees, on the other hand, tend to map continual maximum values of concentration and velocity abundances 

toward the second 180◦ part of the 360◦ phase cycle and continual minimum values of both abundances to the first 180◦ part 

of the 360◦ phase cycle. These results suggest that the locality preservation projection is not sensitive to the asymmetrical 

turbulent sediment-flow physics while multidimensional scaling is sensitive to such dynamics.  
 

Keywords: concentration abundance, classification tree analysis, manifold alignment, Procrustes analysis, t-distributed stochastic 

neighbor embedding, locality preservation projection, multidimensional scaling, velocity abundance 

 

1. Introduction 
Sediment transport under sheet flow conditions due to sinusoidal temporal ambient flow forcing is an important fluid 

dynamical process pertinent to a wide range of coastal environmental problems including beach erosion/recovery, swash 

processes, and scour around structures [1,2]. The engineering implications of these processes with respect to safeguarding 

structures are potentially expensive with millions of dollars involved if the pertinent fluid flow physics is not handled 

appropriately. Addressing these complex issues hinges on understanding flow-particle dynamics whose intricacy and 

complexity is not captured completely by the linear theory of sediment transport. Modern theory and research have indicated 

that nonlinear flow effects are important contributors to sediment transport dynamics over both short and long-time scales 

[3]. In particular, flow asymmetrical turbulent flow response, driven by nonlinear boundary layer dynamics, is an important 

dynamical issue responsible for macroscopic sediment transport changes and can be captured by numerical models [4]. The 

resolution of this process by modern computational models such as large eddy simulations (LESs) allow for practical 

engineering solutions dealing with sediment transport. 

Modern engineering science and technology suggests that the future of operational sediment transport lies in the 

manipulation of boundary layers to control sediment transport, preventing damage and extravagant costs when possible. 

Such control relies on both engineering structures capable of physically interacting with fluid-particle flow as well as 

practical predictive models parameterizing the gross structural behavior of statistical sediment motion over time and space. 

Machine learning is believed to be a strong practical facilitator towards the latter by its ability to find patterns in complex 

flow field output emanating from numerical simulations. The goal of this research is first order illustration of how machine 

learning can help in understanding time varying boundary layer eddy structure within a flow field. Manifold learning and 

classification tree analysis are applied to velocity and concentration data from a LES of a medium particle saturated water 

flow field under sinusoidal ambient flow forcing. The approach is to treat turbulence as information and use machine learning 

to derive structural relationships embedded in the evolution of the turbulent dynamical process which are potentially 

exploitable by boundary layer manipulation technology. Signal processing-based machine learning modeling is applied here 

for the purpose of characterizing subtle turbulent information changes in the boundary layer dynamics in the form of turbulent 

flow asymmetrical response. Considering wider research implications, it is also believed that the investigation and 

characterization process could lead to a formalism which can be used as a predictive tool in other time varying fluid 

dynamical problems.  

     The structure of this paper is as follows. First the LES data structure is briefly explained. This is followed by delineation 

and explication of the manifold learning and classification tree analysis methods used in pattern analysis of this data. The 

results of these two machine learning analytical methods are then illustrated with a focus on how both methods characterize 

turbulent flow asymmetrical response. Summary conclusions are finally given based on the feature parameterization of 

boundary layer flow over distinct phases of the forcing cycle, demonstrating the nature of the intersection of turbulent flow 

physics and machine learning.   
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2. Large Eddy Simulation Data Structure  
     A turbulence-resolving Eulerian two-fluid model was applied to oscillatory sheet flow involving medium sized sand under 

sinusoidal ambient free stream flow forcing [4]. The model and its results were used to study fluid particle interactions to 

resolve issues of long-standing interest in fluid flow-based sediment transport including particle settling, flow instability 

change, and enhanced boundary layer thickness [4]. In particular, the main objective of the model study was an investigation 

into the processes responsible for the observed differences in medium and fine sand dynamics in oscillatory sheet flow. The 

LES model consisted of modeling the Navier Stokes equations for a two fluid flow where the numerical domain with 200 × 

260 × 92 elements in x, y and z directions respectively. Here x and z are the coordinates in the mean flow and cross mean 

flow direction respectively and y is the vertical coordinate in the direction of gravity. The boundary conditions consist of a 

symmetrical boundary condition applied at the top boundary, a smooth-wall boundary condition applied at the bottom 

boundary, and cyclic boundary conditions applied for the lateral boundaries. The mesh has a non-uniform grid size 

distribution along the y axis. Medium size particles were modeled with a diameter d50 = 280 μm with density ρ = 2650 kg/m3. 

The sinusoidal wave flow forcing wave period was T = 5 s where the maximum free-stream velocity Ufm = 1.5 m/s. For this 

wave condition, the Stokes-layer thickness is δ = 1.26 × 10−3 m and the maximum excursion length is L= 1.19 m, giving 

Reynolds number based on these quantities of Reδ = 1890 and Re = 1.8 × 106 respectively. Further details about the numerics 

can be found in Mathieu et al. [4] 

The LES model reproduces some well-known and distinctive aspects of particle saturated turbulence dynamics for 

oscillatory boundary layers. The change in the concentration profile across the wave period follows the well-documented 

description proposed by O’Donoghue and Wright [5] with a clockwise (anticlockwise) rotation of the concentration profile 

during flow acceleration (deceleration) around a ‘pivot’ of constant concentration. From the analysis of the two-fluid model 

results, this can be explained by a competition between downward settling flux and upward turbulent Reynolds flux over the 

wave period. The gross sediment and turbulent dynamics possess a known asymmetry around the point of change from 

acceleration to deceleration of the flow. 

Data cubes were extracted from the LES data with dimensions consisting of 50 x 50 units in the horizontal plane 

perpendicular to the direction of gravity and 200 units in the vertical direction. The 200-unit vertical scale captures the 

boundary layer flow extending from just above the particle bed to the free stream flow region. Data cubes were acquired at 

15◦ increments along the full 360◦ cyclic phase. The work here demonstrates how machine learning can be sensitive to 

turbulent asymmetrical dynamical characteristics by demonstrating latent space structure which is sensitive to and consistent 

with evolving phase changes in the flow.  

 
3. Manifold Learning Processing Methods and Classification Tree Regression Analysis 
     Three manifold learning decomposition algorithms were used to decompose turbulent velocity fluctuations in the mean flow 

direction and concentration fluctuations into latent-space topological values which are dubbed abundances. These are the t-

distributed stochastic neighbor embedding (t-sne), the multi-dimensional scaling (mds), and the locality preserving projection 

(lpp). Classical mds is a dimensional reduction technique where the objective is to find a data pattern in a lower dimensional 

space such that data points close together in the higher dimensional space are also close after dimensionality is reduced. 

Proximity of data points is measured using a dissimilarity matrix D which is a n x n asymmetric matrix which measures 

dissimilarity between data point observations [6]. In this work data points, each representing different dimensions, 

correspond to horizontal slices of the LES field at different depths.  Classical mds is a metric-based decomposition where 

the dissimilarity is the Euclidean distance between points. A value k is needed for the calculation of the k largest eigenvalues 

and eigenvectors. In this work, the value of k = 2 is used to visualize the projections of the velocity and concentration data 

in 2 dimensions.  

The lpp method is a dimensionality reduction method that is a data driven, local preservation mapping that exhumes weak 

covariance structure in high dimensional data. It is a form of nonlinear manifold learning which unfolds complex higher 

dimensional manifold structure in a lower number of dimensions for ease of visualization, preserving nearness (distance) of 

similar data points. This is done through the process of embedding or projection of the original manifold into a lower 

dimension space while adhering to the constraint of keeping dissimilar features segregated [7]. As with the mds, the lower 

dimension of 2 is used in the dimensionality reduction calculation.  

The application of the lpp algorithm to velocity and concentration data consists of three steps where each data dimension 

or depth in the LES field is considered a data element. In the first step, the adjacency graph for all dimensions of the multi-
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dimensional data set is calculated. The algorithm connects two data elements with an edge if they are locally close to each 

other, where closeness is measured via a function-based threshold. Data elements below the threshold are connected via 

edges where edge weights are applied via the use of a Gaussian heat kernel which has the form: 
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The input parameter T controls the data element width scale and xb and xc designates two selected data element dimensions 

[7, 8].  The similarity graph threshold T was set to the variance of a data element functioning as a local window. It is used in 

conjunction with an eigenmodal method to accentuate anomalous spatial structures in the velocity and concentration data in 

2 dimensions.  

In the third step, the eigenvectors and eigenvalues for the generalized eigenvector problem are computed which has 

the form: 

                                                                         T TXLX A XMX A  .                                                                            (2) 

The graph Laplacian matrix, M = L-W is a diagonal matrix where 
bb bcc

m w . The quantity XT is the data element matrix 

where the bth column is the bth data element xb.  Column vectors of the matrix A are the solutions of the equation ordered 

according to the eigenvectors 𝜆0 < 𝜆1 <. . . < 𝜆𝑁 [8].  A mapped data element yi (i=1 ,2 , …N) is calculated using data 

element xi as: 

                                                                               T

i iy A x .                                                                                       (3)  

Here AT is a matrix of row eigenvectors (a0, a1, a2,…, aN ) for each of the N dimensions. The eigenvectors are called eigenfaces 

allowing for projection of column data vectors xi and which uncovers low variance data structure. The sensitivity to low 

variance makes the lpp useful for finding and segregating anomalies in velocity and concentration data in 2 dimensions.  

The t-sne is an unsupervised, local, but nonlinear dimensionality reduction technique for embedding high-dimensional 

data for visualization in a two-dimensional space. The two-dimensional t-sne starts by calculating a pairwise similarity 

between all data elements in the high-dimensional space using a Gaussian kernel. The points that are far apart have a lower 

probability of being picked than the elements close together [9]. The algorithm tries to map higher dimensional data elements 

or depth dependent LES information onto a lower dimensional space while preserving the pairwise similarities. This is 

achieved by minimizing the divergence between the probability distributions of the original high-dimensional and lower-

dimensional spaces. The optimization used allows for the creation of clusters and sub-clusters of similar data elements in the 

lower-dimensional space where visualization allows understanding of structure and relationships in the original higher-

dimensional data.  

Procrustes analysis is a statistical shape analysis algorithm where two manifold learning projections are compared 

allowing for assessment of the mean square difference between them. Comparison is performed by optimally translating, 

rotating, and scaling one manifold learning projection with respect to another using singular value decomposition [10,11,12]. 

Singular value decomposition finds the series of matrix transformations that optimally match one manifold projection with 

another. Each manifold learning projection is compared to the next one in the temporal sequence to gain insight into the 

changes in the concentration and the along mean flow direction velocity turbulent dynamics in the boundary layer. 

Classification tree analysis (CTA) was used to estimate the nonlinear rule relating the 24 phase intervals with their 

calculated manifold learning projections or abundances for velocity and concentration. The classification tree model uses 

predictor variables, in this case velocity and concentration abundance values, to build a decision tree providing an output 

response variable in the form of time phase values [6,13]. The ‘leaves’ of the decision tree represent class labels of time 

phase interval and the ‘branches’ velocity and concentration abundance features which lead to the time phase class labels. 

The CTA model algorithm is based on the premise of partitioning the abundance space into increasing smaller subgroups 

where the relationships between the predictor and response is more lucid. Splitting of abundance feature information into 

subsets and the creation of nodes in the decision tree is performed using the Gini impurity index which is a measure of data 

mixing. Gini impurity measures the probability of misclassification of a random instance from a subset labeled according 

to the majority class. Lower Gini impurity means more purity of the subset [14]. All potential bifurcations at every node 

are evaluated where minimization of Gini impurity for velocity/concentration abundance subgroups leads to optimal tree 
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nodal splits. The stopping criteria of maximal tree depth is used to halt the tree growing process producing time-based phase 

class labels.  

The Matlab fitctree algorithm [6] was used to estimate the classification tree using the time phase, and velocity and 

concentration abundance training data. The parameters used in the calculation include the use of principal component analysis 

to find the best split in the predictor variables. The maximum number of decision splits was set to 20 and the predictor 

variable is always split if the abundance variable has at most 5 levels. Pruning was allowed and cross validation was used 

with 10 folds. It is important to note that the nonlinear classification rule provided by the CTA algorithm is not unique. There 

are many factors that account for non-uniqueness. Of significance is the algorithmic features where multiple splits in the tree 

growing process can give the same minimization of impurity, allowing the algorithm to choose arbitrarily. However, though 

alternative trees can differ in terms of the splitting rules, they tend to achieve comparable levels of accuracy. It is because of 

this that the statistical functional rules, representing the statistical modes of the predictor-response variable training data set 

provided by the fitctree algorithm, are the focus of the time phase-abundance relationship analysis in this work. It is believed 

that physical insight into each decomposition’s characteristic tendency is afforded via examination of the mode nonlinear 

functional mapping of abundance features to time phase label.  

 

4. Manifold Learning Analysis Results 

Manifold learning projections for t-sne, mds, and lpp in two-dimensional space are shown in Figures 1a-f.  The projections shown 

for the mds and lpp are performed using the first 2 eigenvectors extracted from the decomposition. The manifold learning projections 

are shown for sixth phase transition which is the point of maximum forward forcing of velocity or maximum positive shear.  The 

cohesive structure of the mds concentration manifold is noted and is most likely due to the inertia and interstitial forces along with the 

ensuing fluid flow viscosity caused by particles which cause a cohesive pattern in the lower dimensional projection of the higher 

dimensional flow field. Each temporal phase point in the captured forcing cycle admits a manifold learning projection whose 

similitude can be measured using the Procrustes analysis. It is the measurement of the relative differences in the topological structure 

of the manifold learning projections of the concentration and velocity abundance fields which provides insight into the turbulent flow 

response asymmetry.  

 

                a)                                                                                                b) 

 
                             

 

 

 

 

 

 

 

 

 

 

 

 



 

012-6 

                             c)                                                                                       d) 
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       The LES model reproduces other distinctive aspects of particle saturated turbulence dynamics for oscillatory boundary 

layers [4] besides the structure stated above. For medium sand, the boundary layer remains turbulent throughout the wave 

period where strong bed shear generated turbulence occurs at the early stage of the wave period (0◦ to 20◦). Sudden 

intensification of turbulent kinetic energy (tke) is observed at the 20◦ phase due to the creation of two-dimensional 

instabilities. The tke reaches a maximum before the flow peak and decays eventually during flow deceleration resulting in 

the particle deposition without flow re-laminarization, with the tke remaining between 0.04 and 0.08 m2/s2. Figures 2a-f 

shows Procrustes analysis-based dissimilarity curves for velocity and concentration abundances. The pervasiveness of 

turbulence throughout the wave cycle accounts for the high level of dissimilarity in the Procrustes dissimilarity curves for 

the t-sne, lpp, and mds velocity abundances. This is consistent with the high tke values demonstrated in the LES model. 

For the medium sand condition, the Richardson number is below the threshold value of 0.25 in the sheet flow layer 

during the latest stage of flow acceleration and the early stage of flow reversal (60◦–120◦). For medium sand particles, the 

LES model shows that the effect of density stratification is weak where the flow remains turbulent in the boundary layer. 

This again supports the trend of consistently high values observed in the dissimilarity curves for the velocity abundances. It 

is noteworthy however that slight dips in dissimilarity occur in the velocity abundance dissimilarity curves at phase interval 

1 and 12 for all manifold learning decompositions. The dips correspond to the points of maximum acceleration and 

deceleration associated with the flow start-up process and reversal. Strong local minima at the temporal phase transition 

point associated with flow reversal (phase interval 12) are shown in the Procrustes dissimilarity plots for lpp and mds-based 

concentration abundances. It is strongly believed that the sharp drop in dissimilarity or heightened similarity in the manifold 

learning projections during this transition is due to the relaxation of ambient shear forcing. Low values of bed shear decrease 

the amount of mixing in the water column, producing a similitude of manifold structure over this small time interval.  

 

 

 

 

Figure 1: Manifold learning decomposition projections or abundances using the first two 

eigenvectors/dimensions. a) t-sne velocity and b) concentration abundances, c) lpp velocity and d) 

concentration abundances, and e) mds velocity and f) concentration abundances. 
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a)       b) 
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            e)                                                                                   f) 

 
 
 

 
 
 
 
5. Classification Tree Analysis Results  

The statistical mode t-sne analysis-based classification decision tree is shown in Figure 3. It is noted again that the 

nonlinear rule relating velocity and concentration abundances with temporal phase intervals is not unique. Every iteration of 

the Matlab classification tree algorithm can provide a different classification rule. However, the variance in the rule 

generation process is not large with the statistical mode being robust. The mode t-sne-based decision tree possesses a root 

node that is always a concentration abundance while the second level bifurcation nodes contain only velocity abundance. 

Characteristic pathways exist in the decision tree that are robust and offer insight into the asymmetrical boundary layer 

response associated with sediment transport under sinusoidal shear forcing. If the root node is taken as the beginning point 

and the ‘greater than’ operation is taken at each node (which translates as movement along an edge to the right), then the leaf 

Figure 2: Procrustes analysis dissimilarity curves calculated from manifold learning projections for each of the 23 

temporal phase transition intervals. Dissimilarity curves for t-sne-based a) velocity abundance and b) concentration 

abundance. Dissimilarity curves for lpp-based c) velocity abundance and d) concentration abundance. Dissimilarity 

curves for mds-based e) velocity abundance and f) concentration abundance. 
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temporal phase class label of the classification tree lies in the first 180◦ part of the 360◦ forcing cycle. The first 180◦ part of 

the 360◦ forcing cycle is also the destination class region if the ‘less than’ operation (which translates as movement along an 

edge to the left) is taken at each node starting from the root node. This result suggests that the t-sne decomposition of velocity 

and concentration abundances does not capture turbulent flow asymmetrical response if the continual extreme decision of 

‘greater than’ is used in the decision tree.  
 

 
 

 

 

 

 

 

 

 

The mode CTA-based decision tree for the mds analysis is shown in Figure 4. The mode mds-based decision tree 

possesses a root node that is always a velocity abundance while the second level bifurcation nodes can contain both velocity 

and concentration abundances. The characteristic pathway based on continually taking the ‘greater than’ operation starting 

from the root node in the decision tree provides a destination which lies in the second 180◦ part of the 360◦ forcing cycle. 

Continually taking the ‘less than’ operation leads to a destination which lies in in the first 180◦ part of the 360◦ forcing cycle. 

This result suggests that the mds decomposition of velocity and concentration abundances along with the CTA does capture 

the turbulent flow asymmetrical response via the continual extreme decision operations of ‘greater than’ and ‘less than’ in 

the decision tree. It is stressed that the turbulent boundary layer response is not symmetric with respect to the midpoint of 

the sinusoidal cycle with particle distributions differing at different phase parts of the forcing cycle. This is a physical 

characteristic of the sediment transport dynamics.  

The mode CTA-based decision tree for the lpp analysis is shown in Figure 5. The mode lpp-based decision tree can 

possess a root node that is either velocity or concentration abundance based. When the root node is concentration based, as 

shown in Figure 5, the second level bifurcation nodes contain only velocity abundances. The characteristic pathway based 

on continually taking the ‘greater than’ operation starting from the root node provides a destination class region which lies 

in the second 180◦ part of the 360◦ forcing cycle. Continually taken the ‘less than’ operation leads to a destination class 

region which can lie in either part of the 360◦ forcing cycle. (Figure 5 shows the result of a temporal phase class label in the 

second 180◦ part of the 360◦ forcing cycle). This result suggests that the lpp decomposition of velocity and concentration 

abundances is not sensitive to turbulent flow asymmetrical response via the continual use of the extreme decision operation 

of ‘less than’ in the decision tree.  

 

 

Figure 3: CTA-based decision tree relating velocity (X1) and concentration (X2) abundances to temporal phase intervals of 

the sinusoidal wave cycle. Mode nonlinear function decision tree rule for the t-sne decomposition is shown. Sinusoidal 

wave cycle broken up into 12 phase intervals of 30◦ where the final decision tree temporal phase interval mapping label 

is shown in yellow at the bottom. Nodal tree bifurcations denoted by bold numerals where edge movement to right is 

associated with velocity/concentration abundance values greater than the nodal value. Edge movement to left is 

associated with velocity/concentration abundance values which are less than the nodal value. 
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6. Conclusions 

Manifold alignment and classification tree analysis are used as small-time scale and large-time scale analytical methods 

elucidating how changes in small-scale boundary layer physics are connected to large-scale ambient temporal changes 

Figure 4: CTA-based decision tree relating velocity (X1) and concentration (X2) abundances to temporal phase intervals of 

the sinusoidal wave cycle. Mode nonlinear function decision tree rule for the mds decomposition is shown. Sinusoidal 

wave cycle broken up into 12 phase intervals of 30◦ where the final decision tree temporal phase interval mapping label 

is shown in yellow at the bottom. Nodal tree bifurcations denoted by bold numerals where edge movement to right is 

associated with velocity/concentration abundance values greater than the nodal value. Edge movement to left is 

associated with velocity/concentration abundance values which are less than the nodal value. 

Figure 5: CTA-based decision tree relating velocity (X1) and concentration (X2) abundances to temporal phase intervals of 

the sinusoidal wave cycle. Mode nonlinear function decision tree rule for the lpp decomposition is shown. Sinusoidal wave 

cycle broken up into 12 phase intervals of 30◦ where the final decision tree temporal phase interval mapping label is 

shown in yellow at the bottom. Nodal tree bifurcations denoted by bold numerals where edge movement to right is 

associated with velocity/concentration abundance values greater than the nodal value. Edge movement to left is 

associated with velocity/concentration abundance values which are less than the nodal value. 
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outside the boundary layer. Manifold alignment of concentration abundances is consistent with known turbulent particle 

physics suggesting the utility of manifold learning decompositions in understanding particle system dynamics under time 

varying forcing. More importantly, changes in topology captured by manifold alignment associated with multidimensional 

data can provide insight into system dynamical changes suggesting temporal points where flow modulation can occur. 

Classification tree analysis of manifold learning abundance values for concentration and velocity in the mean flow direction 

captured over a single sinusoidal forcing cycle is a way of imbuing a sense of conscious mind into a turbulent flow via 

calculation of a decision tree graph. (The tree graph allows the potential for decision making manifested in terms of 

characteristic nodal-edge pathways). Preliminary results demonstrate non unique decision tree graphs for all decompositions 

used but with mode tree structures providing general rule-based tendencies. Moreover, results suggest that the mds 

decomposition along with the classification tree analysis algorithm are sensitive to the asymmetrical particle saturated flow 

physics. The resulting nonlinear rules obtained from estimation of tree graphs coupled to fluid mechanical mechanisms for 

boundary layer modulation may provide the first step towards machine learning-based optimal manipulation of turbulent 

flow. 
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