
Proceedings of the 11th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 2024) 

Chestnut Conference Centre - University of Toronto, Toronto, Canada – June 16-18, 2024 

Paper No. 019  

DOI: 10.11159/ffhmt24.019 

019-1 

 

1D Solutions for Compressible Two-Phase Flows 
in a Heated and Cooled Duct: Mechanical Equilibrium 

 

Schropff Solène1, Daniel Eric1, Petitpas Fabien1 
1Aix Marseille Univ, CNRS, IUSTI, Marseille, France 

5 rue Enrico Fermi, 13013 Marseille, France 

solene.schropff@univ-amu.fr; eric.daniel@univ-amu.fr; fabien.petitpas@univ-amu.fr  

 

 
Abstract - Analytical/quasi-analytical solutions are proposed for a steady, compressible, two-phase flow in mechanical equilibrium in 

a rectilinear duct subjected to heating followed by cooling. The flow is driven by the pressure ratio between a variable outlet pressure and 

an upstream tank. A critical pressure ratio distinguishes subsonic and supersonic outlet regimes: the article proposes a methodology to 

determine the full flow behaviour, as a function of pressure ratio and heat-flux distribution. Going forward, these analytical reference 

solutions will help validate numerical codes for more complex industrial applications. Specific results are studied for a mixture of liquid 

water and steam. 
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1. Introduction 
Analytical solutions for heated compressible flows have firstly been developed for simple 1D cases [1]. To obtain those 

solutions, the conditions of the flow must be specified at the inlet. However, when the flow is subsonic, acoustic waves will 

travel up and down the duct, resulting in a change of inlet state. Thus, to consider upstream variations and determine solutions, 

the inlet is connected to a tank, therefore providing constant inlet stagnation state. Consequently, subsonic flows can be 

recovered without specifying the flow quantities. 

In doing so, the study provided in [2] has shown that, at most, a heated flow in a duct connected to a tank can accelerate 

up until the sonic point. Then, further research presented in [3] described what happens once a cooled subsection is appended: 

if the end of the heated subsection reaches the sonic state, then the cooled subsection can either bring the flow back to the 

subsonic state, or it can accelerate it into a supersonic regime. This branching depends on the pressure ratio between the outlet 

and the tank: according to this pressure ratio and the applied function of heat flux, the behaviour of the flow can be determined. 

As the tank conditions are given fixed data, variations in flow behaviour can be obtained by varying the outlet pressure. 

This previous study has defined the possible regimes and critical pressure ratios; it was demonstrated that there was no 

possible steady shock wave, as the flow is ruled by the intersection of its Rayleigh line and Crussard curve. This description 

shows a similarity with the study of flows in nozzles. The role of the area of the cross section of the nozzle was correlated to 

the local amount of heat applied on the duct: however, it was shown that where a single ratio of areas is needed to determine 

nozzle flows, both heating and cooling power values are needed for heated and cooled flows. 

In the following paper, we study a two-phase flow under mechanical equilibrium: both phases evolve freely in terms of 

thermal and chemical aspects but share a single velocity and single pressure. This kind of flow was first presented in [4] for 

condensed granular matter. It then has been largely used to describe liquid-gas mixtures [5] [6]. The prime and novel objective 

of this study is to propose analytical reference solutions for this type of flow, following the previously described set-up [3]: 

the solutions are extended to a one-dimensional two-phase steady compressible flow, subjected to heating, and then cooling 

power. These reference solutions are developed using the “Stiffened-Gas” equation of state [7], allowing to consider both 

liquids and gases. This work will help validate numerical tools for the simulation of non-adiabatic compressible flows, but 

also to size engineering processes and installations. 
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2. Two-phase flow model: mechanical equilibrium 
 
2.1. Unsteady model 

The following system describes the baseline unsteady model of our study, for a two-phase, compressible, inviscid 

flow in a mechanical equilibrium. It is an extension of the model presented in [4], with the addition of an external heat 

source term 𝛿𝑞̇ [W.m−3]: 
 

{
  
 

  
 
𝜕𝑡𝛼1 + 𝐮. ∇. 𝛼1 = 𝐾∇. 𝐮 + Θ 𝛿𝑞̇/𝜌

𝜕𝑡(𝛼1𝜌1) + ∇. (𝛼1𝜌1𝐮) = 0             

𝜕𝑡(𝛼2𝜌2) + ∇. (𝛼2𝜌2𝐮) = 0             

𝜕𝑡𝜌 + ∇. (𝜌𝐮) = 0                              

𝜕𝑡(𝜌𝐮) + ∇. (𝜌𝐮⨂𝐮+ 𝑃𝐈) = 0       

𝜕𝑡(𝜌𝐸) + ∇. ((𝜌𝐸 + 𝑃)𝐮) = 𝛿𝑞̇     

 (1) 

 

Both phases share a single pressure 𝑃 and velocity 𝐮. Mixture quantities are defined as followed: 𝑣 = 1/𝜌 = ∑ 𝑌𝑘𝑣𝑘𝑘 , 

𝐸 = 𝑒 + 0.5 𝐮2, 𝑒 = ∑ 𝑌𝑘𝑒𝑘𝑘 , where 𝑣 is the mixture specific volume, 𝜌 is the mixture density, 𝐸 is the mixture total 

energy and 𝑒 is the mixture specific internal energy. 

Each symbol indexed by (∙)𝑘 denotes a phase k variable: 𝑣𝑘, 𝜌𝑘 = 1/𝑣𝑘 and 𝑒𝑘 are respectively the specific volume, 

density, and internal energy of said phase. 𝑌𝑘 represents its mass fraction within the mixture, whereas 𝛼𝑘 = 𝑌𝑘𝑣𝑘/𝑣 is its 

volume fraction. It must be noted that ∑ 𝑌𝑘𝑘 = ∑ 𝛼𝑘𝑘 = 1. The mixture entropy is defined as 𝑠 = ∑ 𝑌𝑘𝑠𝑘𝑘  and the entropy 

equation for phase k is the following, with 𝑠𝑘 the entropy and 𝑇𝑘 the temperature of the phase: 

 

𝜌
𝑑𝑠𝑘
𝑑𝑡

=
𝛿𝑞̇

𝑇𝑘
 (2) 

  

With 𝑐𝑘
2 = 𝜕𝑃𝑘/𝜕𝜌𝑘)𝑠𝑘 the definition for the speed of sound of phase k, the mixture sound speed of this model is the 

Wood sound speed 𝑐𝑤 [8]: 

 
1

𝜌𝑐𝑤2
=∑

𝛼𝑘
𝜌𝑘𝑐𝑘

2

𝑘

 (3) 

 

The compressibility factor for a two-phase flow is 𝐾 = (𝜌2𝑐2
2 − 𝜌1𝑐1

2)/(𝜌1𝑐1
2/𝛼1 + 𝜌2𝑐2

2/𝛼2): 𝐾∇. 𝐮 describes the 

variations of the volume fraction under acoustic perturbations. We demonstrate Θ = (𝜌2Γ2 − 𝜌1Γ1)/(𝜌1𝑐1
2/𝛼1 +

𝜌2𝑐2
2/𝛼2), where Γ𝑘 = 𝑣𝑘  𝜕𝑃𝑘/𝜕𝑒𝑘)𝜌𝑘 is the Gruneisen coefficient of phase k. For a positive heat source term, if phase 1 

is denser than phase 2 (therefore 𝜌1 > 𝜌2), the volume fraction 𝛼1 will decrease. 

The system is closed using a convex equation of state (EOS) 𝑒𝑘 = 𝑒𝑘(𝑃𝑘, 𝑣𝑘) for each phase k. In this paper, the 

“Stiffened-Gas” (SG) EOS is used: it allows to describe both liquids and gases as the equation considers attractive and 

repulsive effects in matter: 

 

𝑒𝑘(𝑃𝑘, 𝑣𝑘) =
𝑃𝑘 + 𝛾𝑘𝑃𝑘,∞
𝛾𝑘 − 1

𝑣𝑘 + 𝑒𝑘,𝑟𝑒𝑓 (4) 

 

The EOS parameters 𝛾𝑘, 𝑃𝑘,∞ and 𝑒𝑘,𝑟𝑒𝑓 are obtained from reference thermodynamic curves, characteristics of the 

material and transformation under study (see [9] for details). By using the SG EOS, the speed of sound of phase k reads: 

 

𝑐𝑘
2 = 𝛾𝑘(𝑃𝑘 + 𝑃𝑘,∞)𝑣𝑘 (5) 
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2.2. Steady-state analysis 
2.1.1. System description 

Let us consider a one-dimensional steady flow in a rectilinear duct, defined by a length 𝐿, a constant cross-section 𝑆 and 

𝑆 and a circumference 𝐶. The outer surface 𝑆𝑒𝑥𝑡 = 𝐶 × 𝐿 of the duct receives a 2-steps function of heat flux 𝜑(𝑥) [W.m−2] 
𝜑(𝑥) [W.m−2] along axis x ; 𝑥ℎ𝑒𝑎𝑡 denotes the end of the heated subsection and the beginning of the cooled subsection 

(defining the subscript (·)ℎ𝑒𝑎𝑡). This yields a corresponding power function defined as 𝑄(𝑥) = ∫ 𝜑(𝜂) 𝐶 d𝜂 [W]
𝑥

0
: 

 

𝜑(𝑥) = {
𝜑ℎ𝑒𝑎𝑡 > 0       if 𝑥 ≤ 𝑥ℎ𝑒𝑎𝑡
𝜑𝑐𝑜𝑜𝑙 < 0          otherwise

⟹ 𝑄(𝑥) = {
𝐶 𝑥 𝜑ℎ𝑒𝑎𝑡                                                        if 𝑥 ≤ 𝑥ℎ𝑒𝑎𝑡
𝐶 [𝑥ℎ𝑒𝑎𝑡 𝜑ℎ𝑒𝑎𝑡 + (𝑥 − 𝑥ℎ𝑒𝑎𝑡) 𝜑𝑐𝑜𝑜𝑙]          otherwise

 

 

Therefore, the power received by the entire heated subsection is 𝑄ℎ𝑒𝑎𝑡 = 𝐶 𝑥ℎ𝑒𝑎𝑡  𝜑ℎ𝑒𝑎𝑡, the power lost by the entire 

cooled subsection is 𝑄𝑐𝑜𝑜𝑙 = 𝐶 (𝐿 − 𝑥ℎ𝑒𝑎𝑡) 𝜑𝑐𝑜𝑜𝑙 and the total power received by the duct is 𝑄𝑜𝑢𝑡 = 𝑄ℎ𝑒𝑎𝑡 +𝑄𝑐𝑜𝑜𝑙. Finally, 

the power received per unit area of cross-section defined previously can be retrieved at any point x by the following 

relationship: 𝑞̇𝑠,𝑥 = 𝑄(𝑥)/𝑆 ∝ 𝑄(𝑥). 

The inlet of the duct is connected to a tank, which is characterized by tank conditions with zero velocity, known 

stagnation pressure, temperature, and phases distribution. By coupling both systems, the flow is prescribed along the duct 

based on given parameters: stagnation conditions, outlet pressure, and an applied heat flux function. The system is depicted 

in Figure 1. 

 

 

Figure 1: Fluid flowing from a tank into a heated and cooled duct. 

 
2.1.2. Duct relations 

Integration of system (1) at steady-state between two points (∙)𝑖𝑛 and (∙)𝑥 along axis x of the duct yields: 

 
𝜌𝑖𝑛𝑢𝑖𝑛 = 𝜌𝑥𝑢𝑥 = 𝑚̇𝑠 (6) 

 

𝜌𝑖𝑛𝑢𝑖𝑛
2 + 𝑃𝑖𝑛 = 𝜌𝑥𝑢𝑥

2 + 𝑃𝑥 (7) 

 
𝑚̇𝑠(𝐻𝑥 −𝐻𝑖𝑛) = 𝑞̇𝑠,𝑥 (8) 

 

where 𝑚̇𝑠 = 𝜌𝑢 = 𝑚̇/𝑆 is the mass flow rate per unit area of cross-section, 𝑞̇𝑠 = 𝑄/𝑆 is the power received per unit area 

of cross-section and 𝐻 = ℎ + 0.5 𝑢2 is the total specific enthalpy of the mixture. The mixture internal enthalpy ℎ is defined 

as ℎ = ∑ 𝑌𝑘ℎ𝑘𝑘 , with ℎ𝑘 = 𝑒𝑘 + 𝑃𝑘𝑣𝑘 the internal specific enthalpy of phase k. Combining equations (6) and (7) yields the 

equation of the Rayleigh line of the mixture in the (𝑃, 𝑣) plane: 

 

𝑃𝑥 = 𝑚̇𝑠
2(𝑣𝑖𝑛 − 𝑣𝑥) + 𝑃𝑖𝑛 (9) 
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As we hypothesize a uniform distribution of heat flux between the phases, we add the following relation between 
(∙)𝑖𝑛 and (∙)𝑥 to close the problem: 

𝑒𝑘,𝑥 − 𝑒𝑘,𝑖𝑛 +
𝑃𝑥 + 𝑃𝑖𝑛

2
(𝑣𝑘,𝑥 − 𝑣𝑘,𝑖𝑛) =

𝑞̇𝑠,𝑥
𝑚̇𝑠

 (10) 

 

This guarantees the conservation of the mixture energy: 

 

∑ 𝑌𝑘𝑒𝑘,𝑥
𝑘

−∑ 𝑌𝑘𝑒𝑘,𝑖𝑛
𝑘

+
𝑃𝑥 + 𝑃𝑖𝑛

2
(∑ 𝑌𝑘𝑣𝑘,𝑥

𝑘
−∑ 𝑌𝑘𝑣𝑘,𝑖𝑛

𝑘
) =∑ 𝑌𝑘

𝑘

𝑞̇𝑠,𝑥
𝑚̇𝑠

 

 

Combining equation (10) with the SG EOS expression of phase internal energy 𝑒𝑘(𝑃𝑘 , 𝑣𝑘) (4) results in the following 

expression for phase k specific volume, which describes the Crussard curve for phase k in the (𝑃, 𝑣) plane: 

 

𝑣𝑘,𝑥 =
(𝛾𝑘 + 1)(𝑃𝑖𝑛 + 𝑃𝑘,∞) + (𝛾𝑘 − 1)(𝑃𝑥 + 𝑃𝑘,∞)

(𝛾𝑘 − 1)(𝑃𝑖𝑛 + 𝑃𝑘,∞) + (𝛾𝑘 + 1)(𝑃𝑥 + 𝑃𝑘,∞)
𝑣𝑘,𝑖𝑛 +

2(𝛾𝑘 − 1)

(𝛾𝑘 − 1)(𝑃𝑖𝑛 + 𝑃𝑘,∞) + (𝛾𝑘 + 1)(𝑃𝑥 + 𝑃𝑘,∞)

𝑞̇𝑠,𝑥
𝑚̇𝑠

 (11) 

 
2.1.3. Tank-inlet relations 

The tank, denoted by subscript (·)0, contains a mixture at mechanical and thermal equilibrium. The two phases are 

respectively in 𝑌𝑘,0 = 𝛼𝑘,0𝜌𝑘,0/𝜌0 mass proportions, which are conserved from the tank throughout the duct in mechanical 

equilibrium as there is no phase change, yielding 𝑌𝑘,0 ≡ 𝑌𝑘. The phase k density within the tank is retrieved through the 

SG EOS, as 𝜌𝑘,0 = 𝜌𝑘,0(𝑃0, 𝑇0). The inlet (denoted by subscript (·)𝑖𝑛) stagnation state is recovered by slowing down the 

flow to rest through an isentropic process and is equivalent to the tank state. This means that 𝑃0,𝑖𝑛 ≡ 𝑃0 and 𝑇0,𝑖𝑛 ≡ 𝑇0.  

On the tank-inlet side, the only available relations are the conservation of total specific enthalpy (𝐻𝑖𝑛 = 𝐻0 = ℎ0) 
and specific entropy (𝑠𝑖𝑛 = 𝑠0) of the mixture. Even if the supersonic solution is mathematically acceptable, only the 

subsonic solution is sought to be consistent with an actual tank. Therefore, the mass flow rate is expressed as followed: 

 

𝑚̇𝑠(𝑃𝑖𝑛) = √2(ℎ0 − ℎ𝑖𝑛)/𝑣𝑖𝑛 (12) 

 

As there is no possible shock wave or input of heat between the tank and the inlet, the model is also isentropic from 

the point of view of each phase k (𝑑𝑠𝑘/𝑑𝑡 = 0). With the use of the SG EOS, we obtain the following equations: 

 

𝑣𝑘,𝑖𝑛
𝑖𝑠 (𝑃𝑖𝑛) = 𝑣𝑘,0 (

𝑃0 + 𝑃𝑘,∞
𝑃𝑖𝑛 + 𝑃𝑘,∞

)

1/𝛾𝑘

 (13) 

 

ℎ𝑘,𝑖𝑛
𝑖𝑠 (𝑃𝑖𝑛) =

𝛾𝑘𝑣𝑘,0(𝑃0 + 𝑃𝑘,∞)

𝛾𝑘 − 1
(
𝑃0 + 𝑃𝑘,∞
𝑃𝑖𝑛 + 𝑃𝑘,∞

)

(1−𝛾𝑘)/𝛾𝑘

+ 𝑒𝑘,𝑟𝑒𝑓 (14) 

 

3. Reference solutions: determining flow behaviour 
In the following analysis, the characterization of the flow is done from the point of view of the mixture. Two-phase 

flows behaviour can be divided in specific regimes by the same critical pressure ratios as for single-phase flows subjected 

to heating and cooling powers [3]: Π1 and Π3 (see Table 1). The flow can be subsonic, supersonic, or choked (sonic) at 

specific locations. We find out by analytical calculations what are the conditions required to determine the flow regime 

and we seek the values of the different critical pressure ratios by solving the system of equations composed of the duct 

relations and the tank-inlet relations. 

We define the dynamical parameter of the flow, which is the pressure ratio between the outlet and the tank: Π =
𝑃𝑜𝑢𝑡/𝑃0. As 𝑃0 is a fixed parameter, the outlet pressure 𝑃𝑜𝑢𝑡 will be modified to cause a change in behaviour.  
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Table 1: Pressure ratios definition for a flow in heated and cooled duct. 

Π = 1 No flow 

Π1 < Π < 1 Fully subsonic flow 

Π = Π1 Subsonic inlet, choked flow at the end of the heated subsection and subsonic everywhere 

Π3 < Π < Π1 
Subsonic inlet, choked flow at the end of the 

heated subsection and supersonic outlet  

(Shock waves outside of the duct) 

Π = Π3 (Adapted flow outside of the duct) 

Π < Π3 (Expansion waves outside of the duct) 

 
3.1. Fully subsonic flow 

When the mixture is fully subsonic between the inlet and the outlet, it means that Π > Π1: information coming from 

downstream can travel back up and impact the inlet state. Given the previous statement, to firstly determine the inlet mixture 

pressure 𝑃𝑖𝑛 and therefore the inlet state, we evaluate the Rayleigh line (9) between the inlet (⋅)𝑖𝑛 and outlet (⋅)𝑜𝑢𝑡: 
 

𝑓(𝑃𝑖𝑛) = 𝑚̇𝑠
2 (∑ 𝑌𝑘𝑣𝑘,𝑜𝑢𝑡

𝑘
−∑ 𝑌𝑘𝑣𝑘,𝑖𝑛

𝑖𝑠

𝑘
) + 𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛 = 0 (15) 

 

On one hand, the isentropic relations allow to determine the mass flow rate 𝑚̇𝑠(𝑃𝑖𝑛) (12) and inlet specific volumes of 

the phases, 𝑣𝑘,𝑖𝑛
𝑖𝑠 (𝑃𝑖𝑛) (13). On the other hand, the outlet pressure 𝑃𝑜𝑢𝑡 is a known constant, as well as the outlet heat flux 

𝑞̇𝑠,𝑜𝑢𝑡, and thus the specific phase volumes at the outlet, 𝑣𝑘,𝑜𝑢𝑡(𝑃𝑖𝑛), are computed from equation (11). 

Now that the inlet state is known, the flow state along each point of the duct must be determined. Knowing the inlet 

pressure 𝑃𝑖𝑛, the unknown is now the duct pressure at any point x, 𝑃𝑥. To evaluate it, we consider again the Rayleigh line (9), 

but this time between the known inlet and undetermined point x of the duct: 

 

𝑓(𝑃𝑥) = 𝑚̇𝑠
2 (∑ 𝑌𝑘𝑣𝑘,𝑥

𝑘
−∑ 𝑌𝑘𝑣𝑘,𝑖𝑠

𝑖𝑠

𝑘
) + 𝑃𝑥 − 𝑃𝑖𝑛 = 0 (16) 

 

All inlet related variables, 𝑃𝑖𝑛, 𝑚̇𝑠(𝑃𝑖𝑛) and 𝑣𝑘,𝑖𝑛
𝑖𝑠 (𝑃𝑖𝑛) are known and constant for a given pressure ratio Π. Therefore, 

the remaining variables to determine are the specific phase volumes 𝑣𝑘,𝑥(𝑃𝑥) from equation (11), given that we know the heat 

flux function 𝑞̇𝑠,𝑥 at all points of the duct. Equation (16) yields two positive roots: the lowest one corresponds to a supersonic 

regime, which is not our case of study, and the highest one corresponds to a subsonic regime, which is therefore the one that 

is retained for the value of subsonic pressure 𝑃𝑥
𝑠𝑢𝑏(𝑃𝑖𝑛). 

 
3.2. Choked flow 

We now consider that the mixture is choked at 𝑥ℎ𝑒𝑎𝑡 ≡ (⋅)ℎ𝑒𝑎𝑡 point: it means that Π ≤ Π1 and information coming from 

the cooled subsection cannot impact the heated subsection and the inlet state. Having reached a choked flow at the end of the 

heated subsection, we assume that 𝑀 = 1 at that point, and that there are two possible states in the cooled subsection: choked 

and then supersonic, or subsonic. Therefore, we now evaluate the Rayleigh line (9) between (⋅)𝑖𝑛
∗  and (⋅)ℎ𝑒𝑎𝑡, to numerically 

determine 𝑃𝑖𝑛
∗ , where (⋅)𝑖𝑛

∗  denotes the inlet state for which the flow ends up choked: 

 

𝑓(𝑃𝑖𝑛
∗ ) = 𝑚̇𝑠

2 (∑ 𝑌𝑘𝑣𝑘,ℎ𝑒𝑎𝑡
𝑘

−∑ 𝑌𝑘𝑣𝑘,𝑖𝑛
𝑖𝑠

𝑘
) + 𝑃ℎ𝑒𝑎𝑡 − 𝑃𝑖𝑛

∗ = 0 (17) 

 

The specific phase volumes at the inlet, 𝑣𝑘,𝑖𝑠
𝑖𝑠 (𝑃𝑖𝑛

∗ ), are determined from equation (13) and the mass flow rate 𝑚̇𝑠(𝑃𝑖𝑛
∗ ) 

from equation (12). The remaining variable, 𝑃ℎ𝑒𝑎𝑡, which is the mixture pressure at the end of the heated subsection, will 

further constrain the system to ensure a sonic state at that point. The equation of conservation of total energy (8) evaluated 

between (⋅)𝑖𝑛
∗  and (⋅)ℎ𝑒𝑎𝑡 yields the following expression (given that 𝐻𝑖𝑛 = 𝐻0): 
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𝑓(𝑃ℎ𝑒𝑎𝑡) = 𝐻ℎ𝑒𝑎𝑡 −𝐻0 − 𝑞̇𝑠,ℎ𝑒𝑎𝑡/𝑚̇𝑠 = 0 (18) 

 

Determining 𝑃𝑖𝑛
∗  thus requires imbricating two numerical methods to solve the equations presented in (17) and (18). 

total mixture enthalpy at (⋅)ℎ𝑒𝑎𝑡 point for a choked flow (𝑀ℎ𝑒𝑎𝑡 = 1 ⟹ 𝑢ℎ𝑒𝑎𝑡 = 𝑐𝑤,ℎ𝑒𝑎𝑡) is expressed as followed:  

 

𝐻ℎ𝑒𝑎𝑡(𝑃ℎ𝑒𝑎𝑡) =∑ 𝑌𝑘ℎ𝑘,ℎ𝑒𝑎𝑡
𝑘

+ 0.5 𝑐𝑤,ℎ𝑒𝑎𝑡
2  (19) 

 

The Wood sound speed 𝑐𝑤 is evaluated by equation (3) at point (⋅)ℎ𝑒𝑎𝑡. The phase specific internal enthalpy  ℎ𝑘 =
𝑒𝑘 + 𝑃𝑘𝑣𝑘 is determined from the SG EOS (4). 

Once the inlet state has been determined for a choked flow, we want to determine the flow state along the entirety 

of the duct. With the same approach as for the fully subsonic flow, equation (9) is evaluated between (⋅)𝑖𝑛
∗  and (⋅)𝑥: 

 

𝑓(𝑃𝑥) = 𝑚̇𝑠
2 (∑ 𝑌𝑘𝑣𝑘,𝑥

𝑘
−∑ 𝑌𝑘𝑣𝑘,𝑖𝑛

𝑖𝑠

𝑘
) + 𝑃𝑥 − 𝑃𝑖𝑛

∗ = 0 (20) 

 

For the heated subsection, between (⋅)𝑖𝑛
∗  and (⋅)ℎ𝑒𝑎𝑡, the flow can only be subsonic. Therefore, the subsonic solution 

is determined by retaining the highest positive root of equation (20), 𝑃𝑥
𝑠𝑢𝑏(𝑃𝑖𝑛

∗ ). For the cooled subsection (𝑥 ≥ 𝑥ℎ𝑒𝑎𝑡), 
the flow is sonic (𝑥 = 𝑥ℎ𝑒𝑎𝑡) and can then either be subsonic – then again 𝑃𝑥 = 𝑃𝑥

𝑠𝑢𝑏(𝑃𝑖𝑛
∗ ) – or supersonic, where 𝑃𝑥 =

𝑃𝑥
𝑠𝑢𝑝(𝑃𝑖𝑛

∗ ), which is the lowest positive root of equation (20). The critical outlet states are determined for (⋅)𝑜𝑢𝑡: therefore 

Π1 = 𝑃𝑜𝑢𝑡
𝑠𝑢𝑏/𝑃0 and Π3 = 𝑃𝑜𝑢𝑡

𝑠𝑢𝑝
/𝑃0. 

 

4. Results: variation of pressure ratio 
We now present some liquid-vapour results that illustrate the flow behaviour in various conditions. They are 

obtained by solving the analytical solutions proposed above, in the following configuration: 

 Steam (⋅)𝑣: 𝛾𝑣 = 1.358, 𝐶𝑣,𝑣 = 1247 [J. kg
−1. K−1], 𝑒𝑟𝑒𝑓,𝑣 = 1.97 × 10

6 [J. kg−1], 𝑃∞,𝑣 = 0 [Pa] (particular case 

of SG EOS) 

 Water (⋅)𝑙: 𝛾𝑙 = 3.423, 𝐶𝑣,𝑙 = 1231.2 [J. kg
−1. K−1], 𝑒𝑟𝑒𝑓,𝑙 = −1.15 × 10

6 [J. kg−1], 𝑃∞,𝑙 = 8.99 × 10
8 [Pa] 

 Tank state: 𝑃0 = 2 [Bar], 𝑇0 = 294 [K], 𝛼0,𝑙 = 0.99, 𝛼0,𝑣 = 0.01 

 Geometry (cylinder of radius 𝑅 and volume 𝑉): 𝑉 = 1/4𝜋 [m3], 𝑅 = 1/2𝜋 [m], 𝑆 = 𝜋𝑅2 = 1/4𝜋 [m2], 𝐶 =
2𝜋𝑅 = 1 [m], 𝐿 = 1 [m], 𝑥ℎ𝑒𝑎𝑡 = 𝐿/2 [m] 

 Power: 𝑄ℎ𝑒𝑎𝑡 = 100 [kW], 𝑄𝑐𝑜𝑜𝑙 = −100 [kW]  (𝑄𝑜𝑢𝑡 = 0 [kW]) 
The critical pressure ratios can first be calculated by the method presented in Section 3.2, which yields the following 

values: Π1 = 0.0828, Π3 = 0.0762. To depict the multiple possible behaviours that are described in Tab. 1, the pressure 

ratio Π must be specified and can then be varied. The whole solution is then calculated between the inlet and the outlet. 

Figure 2 displays mixture variables such as pressure and Mach number. Figure 3 displays phase variables for water 

and steam, such as volume fraction and temperature. All these variables are represented for various values of Π ∈ 

[0.0825; 0.0925], themselves depicted in different colours. The specific solutions corresponding to Π1 and Π3 are labelled 

in the figures, respectively as dashed and dotted lines. 

 

4.1. Analysis of results for 𝚷 > 𝚷𝟏 
Multiple solutions are represented for Π > Π1: the mass flow rate 𝑚̇𝑠(𝑃𝑖𝑛) varies as the state of the flow in the 

heated subsection still depends on the variations of 𝑃𝑜𝑢𝑡. When Π decreases but the flow is still subsonic, the flow overall 

accelerates (increase of Mach number) and its pressure decreases. Locally, the Mach number increases in the heated 

subsection, and then decreases in the cooled subsection, which follows the evolution described in [1]. 

The volume fraction of water decreases when the flow is heated and increases when it is cooled. This is related to 

the description provided in Section 2.1: heating the denser phase (here, the water) contracts it. Now considering their 
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temperature, the evolution is not so straightforward. For the water, the decrease of Π only causes an overall slight decrease 

of temperature, and generally, the temperature follows an obvious pattern: it increases when the flow is heated and decreases 

when it is cooled. The temperature of the steam, however, behaves counter-intuitively: it decreases in the heated part and 

increases in the cooled part. For single-phase flows, this specific evolution happens when 1/√𝛾 < 𝑀 < 1 [1].  

 

  
Figure 2: Behaviour of heated and cooled mixture of water and steam under mechanical equilibrium, 

for different values of pressure ratio (different colours). 

 

  

  

Figure 3: Behaviour of heated and cooled water (left) and steam (right) under mechanical equilibrium, 

for different values of pressure ratio (different colours).  
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4.2. Analysis of results for 𝚷 ≤ 𝚷𝟏 
Once Π ≤ Π1,  the mixture is choked at the end of the heated subsection (𝑀ℎ𝑒𝑎𝑡 = 1). It can remain subsonic in the 

part if Π = Π1, or become supersonic if Π < Π1: this branching only depends on the applied pressure ratio Π. When Π ≤
the mass flow rate 𝑚̇𝑠(𝑃𝑖𝑛

∗ ) is fixed by heated subsection choked state, which is determined and cannot change. If Π <
then whatever the value of Π, every supersonic solution is overlapping (see red curves) and there is no steady shock 

the cooled subsection.  

The difference in range of variation for each phase is noticeable: while the solutions for the steam are quite distinct 

and display a clear change of behaviour in the cooled subsection once Π < Π1, the solutions for the water are only slightly 

varying between different pressure ratios. This may be caused by the gap between the critical pressure ratios of the 

mixture and the critical pressure ratios of the single-phase flow, which is presented in [3]. 

 

5. Conclusion 
Following the studies done on solely heated [2] and then on heated and cooled single-phase compressible flows [3] 

connected to a tank, reference solutions were developed for two-phase compressible heated and cooled flows in a 

mechanical equilibrium. 

Starting from the unsteady model, a steady-state analysis was developed to underline the relations defining the flow 

within a non-adiabatic duct. Then, by coupling the inlet of said duct to a tank with known fixed conditions, the state of 

the flow was prescribed throughout the duct. The definition of two possible states was provided: either the pressure ratio 

between the outlet of the duct and the tank is greater than a specific critical pressure ratio and the mixture remains fully 

subsonic, or the pressure ratio is lower and therefore the cooled subsection triggers a supersonic flow. The method to 

determine this critical pressure ratio was developed, depending on the value of the heat flux function applied to the duct. 

Results and analysis were then provided for a mixture of liquid water and steam. 

The analytical solutions stemming from this work are expected to be used for the validation of non-adiabatic 

compressible flows numerical simulation tools, which are largely used in industrial applications (nuclear, aerospace), as 

those involve strong heat fluxes and thermal exchanges. Future works will consist in applying the same set-up on limit 

cases for other equilibrium models, such as thermal and thermodynamical equilibriums, which were studied in [2] for 

solely heated flows. 
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