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Extended Abstract 
In this study, we embark on a deep dive into the fascinating realm of laminar axial flow around a corner. Our 

investigation unfolds along two key axes: to scrutinize the intricate interplay between fluid dynamics and corner geometry, 

and to meticulously examine the impact of different boundary conditions (BCs) imposed at the fluid-solid interface. 

We delve into two distinct BC scenarios: the ”strict” no-slip condition [1,2,4], which dictates a stringent constraint of 

zero velocity at the solid surface, and the more ”permissive” Navier’s slip condition [2,3,5], which accommodates a degree 

of fluid slippage along the boundary. 

Of particular interest is the delicate transition between these two scales of boundary behavior. Actualized by examples 

we show how a short distance theory smoothly becomes an effective at larger distances. Remarkably, we unveil a 

profound 

analogy between the flow problem under investigation and the realm of stationary heat exchange. The heat exchange 

problem is one example of the possible application of our new method (combination of permitting BC and corner geometry) 

by use of one-one correspondence with a vast verity of natural problems [6-12], far beyond the confines of fluid dynamics. 
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