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Abstract - This work examines the effects of the interaction of a transversal and uniform magnetic field applied to a flow with an 

electrically conducting and incompressible fluid. This fluid is bounded by two fixed parallel walls in a channel. The bottom wall 

consists of a porous medium, where the jump of shear stress is given in terms of a suitable relative velocity by a semi-empirical 

boundary condition proposed by Beavers and Joseph. The formulation of the flow problem is based on the incompressible 

magnetohydrodynamic governing equations in terms of non-dimensional variables. The relevant physical parameter measuring the 

relative importance between magnetic and viscous forces is identified as the Hartmann number. The solution of the problem shows 

the existence of a flow deceleration strongly dependent upon the Hartmann number. In addition, another interesting result is the 

observed decrease in the magnitude of the longitudinal component of the magnetic flux density as Hartmann number increases. In 

conclusion, the application of a transverse magnetic field in the flow of an electrically conducting fluid in tiny pores can produce 

an effective effect like the flow deceleration produced as the porous medium permeability is decreased. Therefore, it seems to be 

possible to produce such an effect by just monitoring the magnetic field instead of changing the complex microstructure of the 

porous medium. Finally, the problem of lubrication with an MHD fluid was addressed. Exact solutions were obtained for the velocity 

and pressure field. Due to the braking effects caused by the Lorentz force, the pressure gradient is reduced and consequently the 

support force on the bearing is also reduced. Therefore, the MHD effects for this model undermine the lubrication effects of the 

purely hydrodynamic model. 

Keywords: Magnetohydrodynamics, Porous Medium, Beavers and Joseph Boundary Condition, Flow Control by 

External Magnetic Field, Asymptotic solution, Lubrication Problem. 

 

1. Introduction 
Magnetohydrodynamics (MHD) studies the interaction between an electrically conducting fluid (non-polar and 

non-magnetic) and a magnetic field. Flows with MHD effects are a part of fluid mechanics involving these fluids (such 

as salted water, ionized gases, or liquid metal) and a magnetic field [1]. The industry utilizes this flow type for several 

purposes, including convection inhibition, mixing, heating, deceleration, and fluid pumping. 

The central governing equation in the MHD problem is the modified Navier-Stokes (with the Lorentz force term) 

and Maxwell equations [2]. Due to these complex equations, the asymptotic method becomes an important analysis tool. 

We can consider every MHD problem as a combination of hydrodynamic and magnetic effects. Due to the asymptotic 

method, we fully recover the hydrodynamic case when we set the magnetic effects to zero in an MHD problem. 

Therefore, to control the intensity of the MHD effects in the problems, one can use parameters arising from the non-

dimensionalization process of the resulting equations. This way, critical non-dimensional parameters such as the 

Hartmann number (𝐻𝑎) (ratio of Lorentz to viscous forces) and magnetic Reynolds number (ratio of advection to the 

diffusion of 𝑩) are extracted. In this context, an example of MHD flow is an electrically conducting fluid flowing 

bounded by two fixed flat parallel walls with a uniform transverse magnetic field applied. This problem has various 

applications, such as in the petroleum industry, cooling systems, aerodynamic heating, and fluid droplets [3], [4].  

The main scope of this paper is to solve the flow of an electrically conducting fluid in a channel bounded two 

walls. Note that in one of the applications studied here, one of the walls is porous. The effect of the magnetic field on 

the curve of pressure gradient versus flow rate is examined at different Hartmann numbers. The deviation from the linear 

plot for pure hydrodynamic condition (no-MHD flow) is also explored. Additionally, we calculate the velocity and 

magnetic field induction profiles, and we shall show how the maximum values of these quantities depend on the  
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Hartmann number. The effective viscosity (η𝑒𝑓𝑓)  of the flow is also determined as function of 𝐻𝑎. The studies here are 

important for engineering applications like drag reduction in channel flows with different boundary conditions by 

controlling the applied magnetic field. 

 

2. Problem Formulation 
We are going to study two problems. The first, called a parallel wall problem, is the MHD flow bounded by two 

fixed parallel walls, and the second concerns a lubrication bearing problem. For the first, the three boundary conditions 

of the problem were defined. They refer to the no-slip condition at the upper wall. Beaver and Joseph's condition, defined 

by a semi-empirical method, will be used at the bottom wall (porous medium), and the sliding velocity will be used at 

the porous interface [5].  

The fluid is bounded by two fixed walls with no-slip boundary conditions for the second problem, called the 

lubrication problem. The bottom wall is parallel to the x-axis, and the upper wall varies linearly with this axis. From 

then on, we studied these MHD problems, selected the governing equations, made them non-dimensional and solved 

them. For the two problems, we employed the asymptotic method to split the MHD from the hydrodynamic effect in 

the governing equations. In parallel to this, however, these problems were also studied in a purely hydrodynamic context. 

This way, the governing equations were solved, and made non-dimensional. It is essential to point out that due to the 

high density of calculations, computational assistance was used in solving the equations for the MHD case. 

The studied problems involve an electrically conducting Newtonian fluid interacting with a transverse and 

uniform applied magnetic field. A schematic of the proposed problems can be seen in Fig. 1 and Fig. 2. The transverse 

and uniform magnetic field is denoted as B. Note that 𝐁 = Bx(y) 𝒆̂𝒙 + B0 𝒆̂𝒚, where 𝐵𝑥 is the longitudinal component 

of the induced magnetic field, and 𝐵0 is the transversal component of the applied field.  

Non-dimensionalization simplifies equations by minimizing complexity and reducing the number of variables in 

the model. Thus, the non-dimensional quantities for the parallel wall problem are given by: 

 

𝑦∗ =
𝑦

ℎ
; 𝑣𝑥

∗ =
𝑣𝑥

𝑢𝑚
;  𝑝∗ =

𝑝ℎ

η𝑢𝑚
;  𝐸0

∗ =
𝐸0

𝑢𝑚𝐵0
;  𝐵𝑥

∗ =
𝐵𝑥

𝐵0
. (1) 

 

And, for the lubrication problem, by: 𝑥∗ =
𝑥

𝑙
 , 𝛿∗(𝑥∗) =

𝛿(𝑥)

𝑙
 and 𝑝∗ =

𝑝𝑙

η𝑈
. 

Where the characteristic magnetic flux density, 𝐵0, is given as a characteristic parameter of the problem. The pressure 

field is denoted by 𝑝. The mean velocity is represented as 𝑈. The external electric field is 𝐸0. The length of the walls is 

given by 𝑙. The velocity in the x-direction is 𝑣𝑥, and the film velocity in the porous medium is 𝑢𝑚, which flows at a low 

Reynolds number in a porous medium is calculated by Darcy’s law. First, however, we are going to use it to make the 

Fig.1: Representation of the proposed problem for the 

flow between two fixed parallel walls spaced by h. The 

uniform magnetic field transverse to the applied flow is 

represented by 𝑩. 

Fig.2: Scheme representing a lubrication bearing 

with an external magnetic field. The wall distance 

is δ(𝑥) and varies from 𝛿0 until 𝛿𝑙(𝑥). 
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velocity non-dimensional. Furthermore, another essential non-dimensional parameter is the Hartmann number, defined 

as the ratio between the Lorentz force and the viscous force: 𝐻𝑎 = 𝐵0ℎ√𝐾𝑒/η, where 𝐾𝑒 and η are the electrical 

conductivity and viscosity of the fluid, respectively [2]. Another non-dimensional parameter is the Magnetic Reynolds 

number (ratio between the diffusion time and the advection time of 𝐵): 𝑅𝑒𝑚
= ℎ𝑢𝑚/ν𝑚, where ν𝑚 is the magnetic 

diffusion coefficient [2]. Note that we used a characteristic length for the definitions of the Hartmann number and the 

magnetic Reynolds number, which for the parallel wall problem was defined as ℎ. For the lubrication problem, we used 

the mean velocity as the characteristic velocity in 𝑅𝑒𝑚
. 

 

3. Parallel Wall Problem 
The configuration shown in Fig.1 describes the problem with MHD effects. The current density is evaluated by 

the classical Ohm's law as follows [2]: 

 

𝑱 = 𝐾𝑒(𝑬 + 𝒗 × 𝑩). (2) 

 

Using the magnetic field equation and Eq. (2), we obtain the Lorentz force: 

 

𝒇𝐿 = 𝑱 × 𝑩 = 𝐾𝑒(𝐸0 + 𝑣𝑥𝐵0)(−𝐵0𝒆̂𝒙 + 𝐵𝑥𝒆̂𝒚). (3) 

 

 The governing equation for this problem is −∇𝑝 + 𝜂∇2𝒗 + (𝑱 × 𝑩) = 0. This equation in 𝑥 and 𝑦 directions, 

presented in non-dimensional form, is given by Eq. (4) and Eq. (5), respectively. 

 

σ2 +
𝑑2𝑣𝑥

∗

𝑑𝑦∗2 − 𝐻𝑎
2𝐸0

∗ − 𝐻𝑎
2𝑣𝑥

∗ = 0 (4) 

−
∂𝑝∗

∂𝑦∗
+ 𝐻𝑎

2𝐵𝑥
∗(𝐸0

∗ + 𝑣𝑥
∗) = 0 (5) 

𝑑2𝐵𝑥
∗

𝑑𝑦∗2 + 𝑅𝑒𝑚

𝑑𝑣𝑥
∗

𝑑𝑦∗
= 0 (6) 

 

With the following boundary conditions: 𝑦∗ = 0 ⇒
𝑑𝑣𝑥

∗

𝑑𝑦∗ = ασ(𝑢𝑖 − 1), 𝑦∗ = 1 ⇒ 𝑣𝑥
∗(𝑦∗) = 0 and 𝐵𝑥

∗(𝑦∗ = 0) =

𝐵𝑥
∗(𝑦∗ = 1) = 0, where σ = ℎ/√𝑘 and the non-dimensional quantity α is called the porosity of the porous medium. 

Note that, in order to complete the MHD flow formulation, it is necessary to include in the model the equation of 

magnetic induction transport given by Eq. (6). The analytical solution of the Eq. (4), Eq. (5), and Eq. (6) were obtained 

using the MATLAB software. This way, the velocity field, magnetic flux density, pressure field, flow rate, and induced 

electric field were determined. 

 

4. Lubrication Problem 
For the lubrication problem, we will not use the asterisk (*) to denote non-dimensional quantities to simplify the 

notation. By scale analysis, the non-dimensional governing equations of the lubrication problem are: 

 

𝜕2𝑣𝑥(𝑦)

𝜕𝑦2
− 𝐻𝑎

2𝑣𝑥(𝑦) =
𝜕𝑝

𝜕𝑥
+ 𝐻𝑎

2𝛽;
𝜕𝑝

𝜕𝑦
= 𝐻𝑎

2𝛽𝐵𝑥 + 𝐻𝑎
2𝑣𝑥(𝑦)𝐵𝑥; (7) 
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𝜕𝑣𝑥(𝑦)

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= 0; 

𝜕𝑣𝑥(𝑦)

𝜕𝑦
+

1

𝑅𝑒𝑚

𝜕2𝐵𝑥

𝜕𝑦2
= 0 

 

With the following boundary conditions: 𝑣𝑥 = 𝑣𝑦 = 0 ⇒ 𝑦 = 𝛿(𝑥), 𝑣𝑥 = 1  ⇒ 𝑦 = 0 and  

𝐵𝑥 = 0 ⇒ 𝑦 = 𝛿(𝑥). The parameter 𝛽 =
𝐸𝑜

𝐵0𝑈
 represents the non-dimensional electric field. The solution for the velocity 

field is: 

 

𝑣𝑥(𝑦) = e𝐻𝑎𝛿e-𝐻𝑎y [𝜆 +
e𝐻𝑎𝛿

e2𝐻𝑎𝛿 − 1
(𝜆 − e𝐻𝑎𝛿𝜆 + 1)] − 𝜆 −

𝑒𝐻𝑎𝑦

𝑒2𝐻𝑎𝛿 − 1
(𝜆 − 𝑒𝐻𝑎𝛿𝜆 + 1), (8) 

 

where  𝜆 =
𝛽𝐻𝑎

2−G

𝐻𝑎
2  and 𝐺 = −

𝜕𝑝

𝜕𝑥
. From this result we can obtain the expression for the pressure gradient: 

 

𝐺 =
2 𝐻𝑎

2  β + 𝐻𝑎
3 𝑄MHD − 𝐻𝑎

2 e𝐻𝑎 𝛿 + 𝐻𝑎
2 + 𝐻𝑎

3 β 𝛿 − 2 𝐻𝑎
2  β e𝐻𝑎 𝛿 + 𝐻𝑎

2 𝑄MHD  e𝐻𝑎 𝛿 + 𝐻𝑎
3  β 𝛿 e𝐻𝑎 𝛿

𝐻𝑎  𝛿 − 2 e𝐻𝑎 𝛿 + 𝐻𝑎𝛿 e𝐻𝑎 𝛿 + 2
 , (9) 

 

where 𝑄𝑀𝐻𝐷 is the MHD flow rate and δ is the wall distance which depends on the 𝑥. 

To observe the MHD effects on the lubrication bearing, the pressure field was resolved considering four Hartmann 

values, from a very small value (Ha = 0.01), which is close to the hydrodynamic case, up to a high Hartmann (Ha = 2). 

From Fig. (6), a decay of the pressure distribution in the x direction is observed with the increase in the Hartmann 

number. Until 𝐻𝑎  = 2, there is a negative increase in pressure leading to a case alike the positive profile ( 𝛿𝑜 <  𝛿𝑙), in 

the pure hydrodynamic case. This leads to the assertion that an intense magnetic field is responsible for a pressure drop 

in x, weakening the lubrication effect observed in the purely hydrodynamic case. Therefore, the MHD effects for this 

problem are to inhibit or weaken the support force between bearing and shaft. 

 

5. Asymptotic Solution 
Although it is possible to find an exact solution for Eq. (4), an asymptotic analysis of the flow becomes useful for 

splitting the solution of the problem into two contributions: purely hydrodynamic and correction by magnetic effect. 

Such methodology has the advantage of splitting the solutions as the sum of the two contributions: hydrodynamic and 

MHD. Using a regular perturbations method described in [5], [6], the velocity field can be expressed as: 

 

𝑣𝑥
∗(𝑦∗) = 𝑣0

∗(𝑦∗) + ε𝑣1
∗(𝑦∗) + ε2𝑣2

∗(𝑦∗) + 𝒪(ε3), (10) 

 

where, in this flow problem, the small parameter is ε = 𝐻𝑎
2. Replacing Eq. (10) in Eq. (4) and after a few algebraic 

manipulations, we find the following differential equations for different orders of ε: 

 

𝑑2𝑣0
∗

𝑑𝑦∗2 = −σ2, 𝒪(ε0); 
𝑑2𝑣1

∗

𝑑𝑦∗2 − 𝑣0
∗ = 𝐸0

∗, 𝒪(ε1);  
𝑑2𝑣2

∗

𝑑𝑦∗2 = 𝑣1
∗, 𝒪(ε2) (11) 

 

With the following boundary conditions: 
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𝑦∗ = 0,
𝑑𝑣0

∗(0)

𝑑𝑦∗
= ασ(𝑢𝑖 − 1);

𝑑𝑣1
∗(0)

𝑑𝑦∗
=

𝑑𝑣2
∗(0)

𝑑𝑦∗
= ⋯ = 0 (12) 

𝑦∗ = 1, 𝑣0
∗ = 𝑣1

∗ = 𝑣2
∗ = ⋯ = 0 (13) 

 

Finally, we can write the velocity field as: 

 

𝑣𝑥
∗(𝑦∗) = 𝑣0

∗(𝑦∗) + 𝐻𝑎
2𝑣1

∗(𝑦∗) + 𝒪(𝐻𝑎
4), (14) 

 

Where, 𝑣0
∗ is the solution for the purely hydrodynamic case and 𝑣1

∗ is given by: 

 

𝑣1
∗(𝑦∗) =

𝐸0
∗

2
(𝑦∗2 − 1) + 𝑢𝑖

∗ [
1

2
(𝑦∗2 − 1) +

ασ

6
(𝑦∗3 − 1)] +

ασ

6
(1 − 𝑦∗3) +

σ2

24
(1 − 𝑦∗4). (15) 

 

If 𝐻𝑎 < 0, it means that ε ≪ 0, so the method gives a highly accurate solution in this regime. As 𝐻𝑎 increases, the 

asymptotic solution diverges from the exact solution of the Eq. (4), as we can verify in Fig. (4). This means that the 

terms of higher order cannot be neglected in this regime since the Hartmann number is no longer small. Using this 

asymptotic solution for the velocity field Eq. (14), it is possible to calculate an approximate solution for the magnetic 

field in the 𝑥 direction, in which the solution until 𝒪(𝐻𝑎
4) is expressed by: 

 

𝐵𝑥
∗(𝑦∗) = 𝑅𝑒𝑚

[𝑢𝑖
∗ασ

(𝑦∗ − 𝑦∗2)

2
+ ασ

(𝑦∗2 − 𝑦∗)

2
+ σ2

(𝑦∗3 − 𝑦∗)

6
]

+ 𝑅𝑒𝑚
𝐻𝑎

2 {𝐸0
∗

(𝑦∗ − 𝑦∗3)

6
+ 𝑢𝑖

∗ [
(𝑦∗ − 𝑦∗3)

6
+ ασ

(𝑦∗ − 𝑦∗4)

24
] + ασ

(𝑦∗4 − 𝑦∗)

24

+ σ2
(𝑦∗5 − 𝑦∗)

120
}, 

(16) 

 

Note that 𝐸0
∗ is given by: 

 

𝐸0
∗ = (

𝐻𝑎
2

2
+ 1)

−1

{
σ2

3
+ ασ

(1 − 𝑢𝑖
∗)

2
+ 𝐻𝑎

2 [
ασ

8
+

σ2

30
− 𝑢𝑖

∗ (
1

3
+

ασ

8
)] + 𝒪(𝐻𝑎

4)}. (17) 

 

By Eq. (18), we can determine the flow rate in a purely hydrodynamic contribution and another MHD given by 

Hartmann orders, as follows: 

 

𝑄∗ = ∫ 𝑣0
∗𝑑𝑦∗1

0
+ 𝐻𝑎

2 ∫ 𝑣1
∗𝑑𝑦∗1

0
+ 𝒪(𝐻𝑎

4). (18) 

𝑄∗ =
σ2

12

(4 + ασ)

(1 + ασ)
+

ασ

2(1 + ασ)
+ 𝐻𝑎

2 [
−𝐸0

∗

3
− σ2

(32 + 7ασ)

240(1 + ασ)
−

50ασ

240(1 + ασ)
] + 𝒪(𝐻𝑎

4), (19) 

 

 

6. Effective Viscosity 
Due to the braking effect that the Lorentz force causes in the conducting fluid, it is possible to think of it as a non-

ionized fluid but with a higher viscosity responsible for hindering the flow, which is called effective viscosity. The 
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effective viscosity represents the viscosity that a non-conducting fluid would have in order to present the same 

relationship between flow rate and pressure gradient as the conducting fluid for a certain Hartmann number, so the 

viscosity naturally must depend on 𝐻𝑎. In this way, it is possible to express a purely hydrodynamic flow rate, even for 

an ionized fluid with an equivalent viscosity in the following form [7]: 

 

𝑄 =
𝐺ℎ3

12η𝑒𝑓𝑓
[
ασ + 4 + 6α/σ

(1 + ασ)
], (20) 

 

where η𝑒𝑓𝑓 is the effective viscosity given, in this flow, by: 

 

η𝑒𝑓𝑓 = η [
6 + 𝐻𝑎

2

3(2 + 𝐻𝑎
2)

− 𝐻𝑎
2

(32 + 7ασ + 50α/σ)

(ασ + 4 + 6α/σ)
+ 𝒪(𝐻𝑎

4)]

−1

. (21) 

  

7. Results and Discussion 
Fig. (3) shows plots of the non-dimensional velocity profile as a function of 𝑦 for different Hartmann numbers. 

As the Hartmann number increases, we observe a deceleration of the flow. Additionally, we emphasize that when the 

Hartmann number approaches zero, the MHD flow reverts to the purely hydrodynamic flow (𝐻𝑎 = 0). We can see this 

convergence in Fig. (3), when the velocity profiles for 𝐻𝑎 = 0.01 and the hydrodynamic flow overlap. Fig. (4) shows 

that the maximum velocity occurs in 𝑦∗  =  0 (i.e., bottom wall) because of the sliding condition. Fig. (4) depicts that 

this maximum velocity decreases when the Hartmann number increases. 

Fig. 3: Non-dimensional flow velocity profiles. The − 

represents the velocity profile for a hydrodynamic flow. 

The --- represents the velocity profile for flow with 

MHD effects about different Hartmann numbers 

(differentiated by color). α =  1, σ =  1, η =  1. 

Fig. 4: Comparison between the analytical and 

asymptotic solution for the  maximum velocity 

profile for a Hartmann number variation from 0 to 1. 

α =  1, σ =  1, 𝑦∗ = 0. Note that - represents the 

analytical solution, and --- is the asymptotic solution. 



 

 

 

 

 

 

 

078-7 

Numerous researchers have investigated the magnetic effects on various flows, significantly contributing to our 

understanding of the phenomenon. For example, studies by [8] demonstrate that magnetic effects decrease flow velocity. 

Consequently, as the Hartmann number increases, we can expect a reduction in flow rate for the flow analysed in the 

problem. 

  
From Fig. (5), the intrinsic coupling between the induced magnetic flux density and the velocity can be seen. As 

Hartmann is increased, the effects of the Lorentz force slow down the flow, making the modulus of the magnetic flux 

density smaller. 

 

 Fig. (7) shows the relation between the flow rate and the gradient pressure. If the Lorentz force effect is strong, 

the flow rate diminishes. Despite this flow rate reduction, the relationship between this magnitude and the pressure 

gradient remains linear in this Hartmann regime. Plotting the relation in Eq. (21), it is possible to verify by analysing 

Fig. 7: Flow rate profiles concerning G. Different 

colors represent the magnetic field induction for the 

flow with several 𝐻𝑎 numbers. ℎ = 1, α =  1, σ =  1. 

Fig. 5: Profiles of the non-dimensional magnetic field 

induction in the longitudinal direction. Different 

colors represent the profiles for the flow with several 

𝐻𝑎 numbers. 𝑅𝑒𝑚
= 1, α =  1, σ =  1. The insert 

represents the location where the induced magnetic 

field has its maximum value of 𝐻𝑎. 

Fig. 6: Pressure profiles between bearing and shaft 

according to the geometry in que 𝛿𝑜 >  𝛿𝑙, for 

different Hartmann values.  

Fig. 8: Non-dimensional effective viscosity as a 

function of Hartmann number. α =  1, σ =  1. 
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Fig. (8) that the effective viscosity increases with the Hartmann number as if the MHD effect made the fluid more 

viscous. Because of this effect, the flow rate decays with the increase of Hartmann, as seen in Fig. (7). 
 

8. Conclusion 
In this work, the results have demonstrated how the effects of the MHD Lorentz force can modify the motion of 

an electrically conducting fluid undergoing a pressure gradient. The magnetic effect can decelerate or accelerate (in this 

case, control of the intensity of the electric field is always required) the flow, depending on the intensities of magnetic 

and electrical fields on the conductor fluid. 

With the solution of the parallel walls problem, it was possible to obtain the expected results since the velocity 

profile proved to be coherent with the boundary conditions and the assumptions made. The boundary condition of the 

porous medium (bottom wall) modifies the velocity profile by accelerating it locally. 

The flow problem explored in this paper was similar to the one which occurs in the tiny pores of natural reservoir 

during oil extraction by a pressure-driven flow. In conclusion, the application of a transverse magnetic field in the flow 

of an electrically conducting fluid in tiny pores can produce an effective effect like the flow deceleration produced as 

the porous medium permeability is decreased. Therefore, it seems to be possible to produce such an effect by just 

monitoring the magnetic field instead of changing the complex microstructure of the porous medium.  

Finally, the use of a conductive fluid subject to a magnetic field in a lubrication problem does not help with the 

lift effect, but rather the opposite, inhibiting or reducing this phenomenon. And the main cause of this is the fact that 

there is a dampening of the flow caused by the action of the Lorentz force. 
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