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Abstract – This paper investigates numerically and statistically the impacts of sinusoidal wall temperature variation on the free 
convective temporal heat transfer flow inside a rectangular enclosure filled with glass bead porous medium under the local thermal 
non-equilibrium conditions for the working fluid and the porous medium. The fluid's thermal conductivity is considered variable, and a 
Darcy-Brinkman-Forchheimer model is applied to model the fluid flow. The constitutive equations that govern the flow and heat 
transfer are simulated using the Galerkin-type finite element method. The CFD (computational fluid dynamics) and RSM (response 
surface methodology) results revealed that glass bead diameter, porosity, frequency, and wave amplitude significantly impact the heat 
transfer rate and friction factor.  
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1. Introduction 

Porous media are used in various industrial and natural processes, including geothermal system management, 
hydrocarbon reservoirs, absorption and adsorption processes, heat pipes, packed filters, phase change applications, toxin 
dispersal in groundwater, micro heat exchangers, and transpiration cooling [1-4]. Additionally, porous layers and insertions 
as heat sink mediums show promise in developing sophisticated new technologies. The importance of convective heat 
transmission in porous media has increased significantly over the years. Al-Weheibi et al. [5] studied three-dimensional 
convective heat transfer flow in a right trapezoidal cavity, considering local thermal non-equilibrium (LTNE) between the 
working fluid and the glass bead permeable matrix. They identified the role of the medium's porosity and permeability on 
the LTNE to LTE states and vice versa. Furthermore, the investigation by Al Hajri et al. [6] confirmed that the Darcy and 
Brinkman numbers and the interphase heat transfer coefficient strongly influence LTNE. The numerical investigation by 
Astanina and Sheremet [7] determined whether varying the viscosity of the working liquid could effectively control fluid 
flow and heat transmission under LTNE. 

The study conducted by Varol et al. [8] on sinusoidally varying temperatures in a porous region revealed that the 
strength of heat transfer increases as the amplitude of thermal oscillation increases. Sheremet and Oztop [9] conducted a 
study on thermo-gravitational convection under LTE inside a square geometry with sinusoidally heated wall conditions and 
found that the insertion and position of the porous block significantly amplifies heat transmission. When studying the flow 
and heat transfer characteristics in a porous medium, it is essential to consider permeability variation, which has yet to be 
overlooked in the literature, with only a few works discussing it [10-11]. Recently, Rahman et al. [12] explored the 
transient non-Darcy flow and heat transfer in a heterogeneous porous medium inside a square porous cavity under LTNE 
and sinusoidally varying thermal boundary conditions. Their results needed more statistical analysis to determine the 
optimum heat transfer rate.  Our research thus aims to fill the gap in the existing literature incorporating the RSM by 
exploring the combined impacts of heterogeneous permeability and sinusoidal temperature variation on the convective 
transient flow inside a porous reservoir under LTNE following the non-Darcy approach of Rahman et al. [12]. 

  
2. Physical Model Description 

Let us consider the unsteady two-dimensional free convection flow of a viscous incompressible fluid inside a 
rectangular cavity of height H  and width W  filled with glass bead porous medium. The geometric configuration is 
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depicted in Fig. 1. The x − axis is taken along the lower wall of the cavity whereas the y − is taken along the near wall 
of it. The origin is located at the lower left corner of the cavity. The gravity acts downwards along the y − direction. 

The left wall of the cavity is hot ( hT ) whose temperature varies sinusoidally as ( ) ( )* / sin /cT T T B H n y Hπ= + ∆

whereas the right vertical wall is cold ( c hT T< ), where h cT T T∆ = − ,  *B  is the wave amplitude,  and n  is the 
frequency of the wave. The cavity has adiabatic bottom and top walls, which means that heat cannot escape in the 
direction perpendicular to the walls.  

 
Fig. 1: Flow configuration and coordinate system. 

 
The working fluid (water) and the porous matrix have different temperatures fT  and sT  respectively, and 

therefore, two energy equations are considered to account for the heat transmission. The Darcy-Brinkman-
Forchheimer model is used to describe fluid flow in a porous medium due to the high permeability of the medium. The 
fluid does not slip on the solid walls. To consider the density variation in the buoyancy force, the Oberbeek-
Boussinesq approximation is applied. 

Following [4], [10-11] and Rahman et al. [12] the dimensionless governing equations for the above-described 
model are as follows:  

0X YU V+ =                                                                                                                                                                          (1) 
2 2 2( / Re ) ( / Re ) ( / )X p p p p FU P Dp Da U Dp U C Da U U Vτ ε ε= − − + ∇ − +                                                           (2) 

2 2 2( / Re ) ( / Re ) ( / )Y p p p p F p fV P Dp Da V Dp V C Da V U Vτ ε ε ε θ= − − + ∇ − + +                                                  (3) 

( ) ( )
1/3 0.6

( ) ( ) ( ) ( / Pr Re ) ( ) ( )

                                              +[6(1 ) / (Pr Re )][2 1.1Pr Re ]( )s f

p f f X f Y p X f X Y f YX Y

p p p

U V Dp

Dp

τε θ θ θ κ θ κ θ

ε θ θ

 + + = + 
− + −

                                                 (4) 

2 1/3 0.6( ) ( / Pr Re ) [6 / ( Pr Re )][2 1.1Pr Re ]( )s fs p s p pDp Dpτθ ξ θ ξ γ θ θ = ∇ − + −                                                       (5) 
 

The initial ( 0τ = ) and boundary ( 0τ > ) conditions are 
For 0: τ = =V 0  and f s inθ θ θ= =                                                                                                                            (6) 

For 0 :τ > =V 0 , ( )0sinf B n Yθ π= , ( )0sins B n Yθ π=  for 0X =  and 0 1Y≤ ≤                                                (7)                       
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=V 0 , 0f sθ θ= =  for X Ar=  and 0 1Y≤ ≤                                                                                               (8) 

=V 0 , ( ) ( ) 0f s YY
θ θ= =  for 0Y =  and 0 X Ar≤ ≤                                                                                    (9) 

=V 0 , ( ) ( ) 0f s YY
θ θ= =  for 1Y =  and 0 X Ar≤ ≤                                                                                    (10) 

The dimensionless parameters appeared in Eqs. (1)-(10) are pore diameter /Dp dp H= ,  Darcy number
2 3 2 2( / ) / [150(1 ) ]p pDa K H Dpε ε= = − , diffusivity ratio /s fξ α α= , conductivity ratio /s fγ κ κ= ,  aspect ratio 

/Ar W H= , wave amplitude *0 /B B H= , X -component of conductivity ratio 0.5Pr ReX p pκ ε = +  , Y -

component of conductivity ratio 0.1Pr ReY p pκ ε = +  . 
The nondimensional Nusselt numbers for fluid and solid are defined as 

( )( )
1

0
0

0.1Pr Re ( )p p f X X
Nuf dYε θ

=
= − +∫                                                                                              (11) 

( )( )
1

0
0

0.1Pr Re ( )p p s X X
Nus dYε θ

=
= − +∫                                                                                              (12) 

The skin friction coefficient or nondimensional shear rate is defined by  
( ) 0

(2 / Re )p X X
Cf Dp V

=
=                                                                                                                          (13) 

 
3. Method of Solution 

The complex model equations (1)-(5) possess no analytical solution; we solve them using finite element-based 
software COMSOL Multiphysics (see Uddin and Rahman [13]). The simulated results are validated with De Vahl Davis 
[14] as tabulated in Table 1. The validation data echoed nicely among them. 

 

Table 1: Code validation through average Nusselt number ( Nuf ) for different values of the Rayleigh number. 
Nuf  

310Ra =  510Ra =  
610Ra =  

Present 1.1178 4.5216 8.8278 
De Vahl Davis [14] 1.118 4.519 8.800 
|Error| = [14]-present 41.79 10−×  45.75 10−×  33.13 10−×  

 
3. Results and Discussion 

For numerical simulation, we used water as the working fluid and glass ball as the permeable matrix to explore the 
impacts of the sinusoidal wall temperature and heterogeneous permeability on the thermal and flow fields. The model 
parameter ranges are: 0.01 0.19Dp≤ ≤ , 0.65 0.95pε≤ ≤ , 1 3n≤ ≤ , 0.1 0 1.1B≤ ≤  keeping Re 100p = , Pr 6.84= , 
and 0.5Ar =  fixed. 

 
3.1. Impacts of the Wave Amplitude 

Figure 2 shows that the amplitude of the wave affects the structure of the streamlines (1st column), fluid (2nd 
column), and solid matrix (3rd column) isotherms. Smaller wave amplitudes create two vertically elongated counter- 
clockwise rotating vortices, while larger amplitudes make them circular and move them to the top and bottom of the cavity. 
The left wall of the upper vortex has the highest velocity magnitude. Higher amplitudes result in a more robust fluid flow. 
For smaller wave amplitudes, isotherms for the fluid (2nd column) show complex vortices and higher temperatures at the 
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lower mid-plane of the cavity. At higher wave amplitudes, isotherms turn into parabolic shapes, with the bottom region 
containing more heat. For the solid matrix, the isotherms (3rd column) form thermal boundary layers on both sides of the 
left hot and right cold walls at smaller wave amplitudes. The isotherms evolve from the left wall and move towards the 
cold right wall for larger wave amplitudes. 

 

   

   
Fig. 2: Streamlines (1st column), isolines of ( fθ ) (2nd column), and isolines of ( sθ ) (3rd column) for different values of             

0 0.1B = (1st row), and 0 1.1B = (2nd row) when Re 100p = , Pr 6.84= , 2n = , 0.95pε =  at time 1τ = . 

The fluid temperature oscillates at a high frequency, affecting the pressure. In some parts of the enclosure, the fluid 
temperature becomes colder than the ambient temperature. In Figure 3, we see how the wave frequency ( 1n =  and 2n = ) 
affects the streamlines and isotherms. When 1n = , an anticlockwise rotating vortex covers the entire plane, with the 
maximum velocity near the right wall. When 2n = , two rotating vortices appear, leading to a complex structure of the 
streamlines. The second column shows the temperature distribution for two frequencies, 1n = and 2n = . For 1n = , there 
is strong convection in the middle of the hot left wall, while for 2n = , there are alternating hot and cold regions on the hot 
wall. The isolines elongate towards the right wall of the cavity. A thermal boundary layer forms on the cold wall and 
becomes thinner with higher wave frequency. Higher n  reduces the temperature difference between the hot and cold walls. 
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Fig. 3: Streamlines (1st column), isolines of ( fθ ) (2nd column), and isolines of ( sθ ) (3rd column) for different values of 1n =

(1st row), and 2n = (2nd row) when Re 100p = , Pr 6.84= , 0 0.6B = , 0.95pε =  at time 1τ = . 
 

3.2. Statistical Data Analysis 
The response surface (RS) approach is used to optimize and model the relationship between a response (RP) variable 

and multiple input variables (see [15-17]). The response surface methodology (RSM) involves seven steps, including 
selecting the response, assigning codes to the variables, developing a trial scheme for response, performing regression 
analysis, forming a quadratic polynomial, creating a 2D contour strategy or 3D surface, and analyzing the optimal 
operating settings. The RSM is adopted to verify the accuracy of CFD results. The second-order RSM considers all linear, 
square, and collaboration mechanisms for guessing the response when the effect of target parameters ( Dp , ep , 0B , and 
n ) on the response functions ( Nuf , Nus , and Cf ) for the studied model is taken into account. 

Consider the regression setup as follows (see, [Huda et al. [17]) 
4 4 4 4

2
0

1 1 1 1
|i i ii i ij i j i j

i i i j
y a a x a x a x x r<

= = = =

= + + + +∑ ∑ ∑∑                                                                                                                                                        (14) 

Here, y  represents the response functions Nuf , Nus , and Cf , and ix  and jx  stands for the input variables Dp ,  

ep , 0B , and n .  The ia ’s are the constant coefficients and r  is the error. The target is to establish an excellent fit 
between the response variables and response functions. Box and Wilson [15] proposed the central composite (CC) scheme 
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to fit the second-order RSM model. See Table 2 for the coded levels and design parameters. Eqn. (14) can be substituted 
with input parameters as follows: 

2 2 2 2
0 1 2 3 4 11 22 33 44 12 13 140 0 0y a a Dp a ep a B a n a Dp a ep a B a n a Dpep a DpB a Dpn= + + + + + + + + + + +  

                                                     23 24 340 0a epB a epn a B n+ + +                                                                             (15) 
To establish an accurate relationship between input variables ( Dp ,  ep , 0B , and n ) and the resulting response 

functions ( Nuf , Nus , and Cf ), coefficients in (15) must first be determined. Simulation results were presented in Table 
3 for suggested and actual values generated through the central composite design. Statistical analysis of the standard model 
using the RSM is shown in Tables 4-7 with the ANOVA scheme. The F-value indicates the data's variability around the 
mean, while the p-value determines the likelihood of the null hypothesis. The 2R  value measures how much variability in 
the observed response value can be explained by the experimental factors. Each term of Eq. (15) has its own statistical 
indicators when the distinct parameters are selected. With an 2R value of 99.71% (Table 4) for Nuf , Dp , n , 2Dp , 

0DpB ,  and 0B n  are important model expressions. The classical F-value of 362.71 suggests the model is significant, 
with a p-value of less than 5%. Thus, the final regression model equation for Nuf  (Table 7) becomes  

2203.23 2628.13 127.08 25.33 8818.72 684.12 10 3.940 6 0Nuf Dp B n Dp DpB B n= + + +− − +                                   (16) 
Similarly, the regression model equations for Nus  and Cf  become 

2 2333.86 1097.55976 698.04 0 541.73 436.33 0 137.50 212.29 0Dp B n B n B nNus + − += + − +                                    (17) 
0.002902 0.027723 0.003975 0.011045 0.066624 0 0.016988 00 pC ep DpB e Bf Dp B= +− − − ++                           (18) 

 
Table 2: Designed factors (variables) and coded levels for composite central design (CCD). 

Actual Factors 
(variables) Name 

Coded Factors 
(variables) Name 

Level 
-1 (low) 0 (medium) 1 (high) 

Dp  A  0.01 0.1 0.19 
ep  B  0.65 0.8 0.95 

0B  C  0.1 0.6 1.1 
n  D  1 2 3 

 
Table 3: Levels for input factors and output (response) functions. 

Run 
order 

Coded values  Actual values  Observed Response functions 
A  B  C  D  Dp  ep  0B  n  Nuf  Nus  Cf  

1 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
2 1 -1 -1 -1  0.19 0.65 0.1 1  16.592 310.07 0.00054035 
3 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
4 1 1 1 1  0.19 0.95 1.1 3  538.9 827.34 0.015266 
5 1 0 0 0  0.19 0.8 0.6 2  201.73 460.45 0.0074778 
6 1 1 -1 1  0.19 0.95 0.1 3  48.6 332.56 0.0022873 
7 1 -1 1 1  0.19 0.65 1.1 3  537.31 839.98 0.0063341 
8 -1 -1 0 1  0.01 0.65 0.1 3  245.58 288.25 0.00037477 
9 0 0 0 1  0.1 0.8 0.6 3  293.62 475.99 0.0042932 
10 -1 0 0 0  0.01 0.8 0.6 2  353.91 402.09 0.0015136 
11 -1 1 -1 1  0.01 0.95 0.1 3  264.5 301.8 0.0044809 
12 0 1 0 0  0.1 0.95 0.6 2  208.53 466.07 0.0091773 
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13 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
14 1 1 -1 -1  0.19 0.95 0.1 1  16.747 298.38 0.0006047 
15 1 -1 -1 1  0.19 0.65 0.1 3  48.446 345.14 0.000577 
16 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
17 1 1 1 -1  0.19 0.95 1.1 1  209 354.67 0.022301 
18 -1 1 1 1  0.01 0.95 1.1 3  661.07 742.55 0.0052491 
19 -1 -1 1 1  0.01 0.65 1.1 3  642.86 728.65 0.00059278 
20 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
21 -1 1 -1 -1  0.01 0.95 0.1 1  238.12 273.15 0.0040341 
22 0 0 1 0  0.1 0.8 1.1 2  377.78 765.36 0.009737 
23 0 0 0 0  0.1 0.8 0.6 2  206.99 473.86 0.0055585 
24 -1 -1 1 -1  0.01 0.65 1.1 1  262.26 293.86 0.00060336 
25 -1 1 1 -1  0.01 0.95 1.1 1  273.61 302.47 0.0040615 
26 0 0 0 -1  0.1 0.8 0.6 1  107.09 165.42 0.0048537 
27 0 -1 0 0  0.1 0.65 0.6 2  205.89 484.88 0.0025657 
28 0 0 -1 0  0.1 0.8 0.1 2  43.220 369.22 0.0024242 
29 1 -1 1 -1  0.19 0.65 1.1 1  208.7 363.47 0.0093705 
30 -1 -1 -1 -1  0.01 0.65 0.1 1  220.64 260.38 0.00032391 

 
Table 4: Analysis of variance (ANOVA) for Nuf . 

Source DOF SS Adj. SS F-Value p-Value Comment 
Model 14 7.917E+05 56546.81 362.71 < 0.0001 significant 
Dp  1 99238.84 99238.84 636.55 < 0.0001 significant 
ep  1 278.47 278.47 1.79 0.2013 insignificant 
B  1 3.667E+05 3.667E+05 2351.92 < 0.0001 significant 
n  1 1.659E+05 1.659E+05 1064.22 < 0.0001 significant 

.Dp ep  1 254.09 254.09 1.63 0.2211 insignificant 

.Dp B  1 15163.77 15163.77 97.27 < 0.0001 significant 

.Dp n  1 590.04 590.04 3.78 0.0707 insignificant 

.ep B  1 1.73 1.73 0.0111 0.9175 insignificant 

.ep n  1 5.75 5.75 0.0369 0.8503 insignificant 
.B n  1 1.075E+05 1.075E+05 689.60 < 0.0001 significant 

2Dp  1 13220.07 13220.07 84.80 < 0.0001 significant 
2ep  1 1.75 1.75 0.0112 0.9170 insignificant 

2B  1 43.80 43.80 0.2810 0.6038 insignificant 
2n  1 94.31 94.31 0.6049 0.4488 insignificant 

Residual 15 2338.52 155.90 - -  
Lack of Fit 10 2338.52 233.85 - -  
Pure Error 5 0.0000 0.0000 - -  
Cor. Total 29 7.940E+05 - - -  

*Here, 2 99.71%R = , Adjusted 2 99.43%R = , Predicted 2 98.22%R = , Adeq. Precision = 71.86 
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Table 5: Analysis of variance (ANOVA) for Nus . 
Source DOF SS Adj. SS F-Value p-Value Comment 
Model 14 8.846E+05 63185.51 78.48 < 0.0001 significant 
Dp  1 16131.67 16131.67 20.04 0.0004 significant 
ep  1 13.68 13.68 0.0170 0.8980 insignificant 
B  1 3.306E+05 3.306E+05 410.61 < 0.0001 significant 
n  1 2.839E+05 2.839E+05 352.56 < 0.0001 significant 

.Dp ep  1 558.61 558.61 0.6938 0.4179 insignificant 

.Dp B  1 1508.55 1508.55 1.87 0.1912 insignificant 

.Dp n  1 473.50 473.50 0.5881 0.4551 insignificant 
.ep B  1 0.0600 0.0600 0.0001 0.9932 insignificant 
.ep n  1 0.1122 0.1122 0.0001 0.9907 insignificant 

.B n  1 1.803E+05 1.803E+05 223.89 < 0.0001 significant 
2Dp  1 1880.12 1880.12 2.34 0.1473 insignificant 

2ep  1 772.47 772.47 0.9594 0.3429 insignificant 
2B  1 30828.88 30828.88 38.29 < 0.0001 significant 

2n  1 48986.56 48986.56 60.84 < 0.0001 significant 
Residual 15 12076.81 805.12 - - - 
Lack of Fit 10 12076.81 1207.68 - - - 
Pure Error 5 0.0000 0.0000 - - - 
Cor. Total 29 8.967E+05 - - - - 

*Here, 2 98.65%R = , Adjusted 2 97.40%R = , Predicted 2 94.22%R = , Adeq. Precision = 32.10 
 

Table 6: Analysis of variance (ANOVA) for Cf . 
Source DOF SS Adj. SS F-Value p-Value Comment 
Model 10 0.0006 0.0001 23.45 < 0.0001 significant 
Dp  1 0.0001 0.0001 41.13 < 0.0001 significant 
ep  1 0.0001 0.0001 46.30 < 0.0001 significant 
B  1 0.0002 0.0002 72.70 < 0.0001 significant 
n  1 2.910E-06 2.910E-06 1.14 0.2996 insignificant 

.Dp ep  1 3.712E-06 3.712E-06 1.45 0.2433 insignificant 

.Dp B  1 0.0001 0.0001 56.20 < 0.0001 significant 

.Dp n  1 6.284E-06 6.284E-06 2.46 0.1336 insignificant 
.ep B  1 0.0000 0.0000 10.15 0.0049 insignificant 
.ep n  1 3.596E-08 3.596E-08 0.0141 0.9069 insignificant 

.B n  1 7.716E-06 7.716E-06 3.02 0.0987 insignificant 
Residual 19 0.0000 2.559E-06 - -  
Lack of Fit 14 0.0000 3.473E-06 - -  
Pure Error 5 0.0000 0.0000 - -  
Cor. Total 29 0.0006 - - -  
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*Here, 2 92.51%R = , Adjusted 2 88.56%R = , Predicted 2 52.65%R = , Adeq. Precision = 21.37 
Table 7: Predictable regression coefficients for Nuf , Nus , and Cf from RSM. 

Coefficient Nuf  Nus  Cf  
values p-values values p-values values p-values 

0a  203.23357 - 333.85997 - -0.002902 - 

1a  -2628.13066 < 0.0001 1097.55976 0.0004 -0.027723 < 0.0001 

2a  -8.05013 0.2013 -1190.53982 0.8980 0.003975 < 0.0001 

3a  -127.07811 < 0.0001 -698.04326 < 0.0001 -0.011045 < 0.0001 

4a  25.32576 < 0.0001 541.72739 < 0.0001 0.001380 0.2996 

11a  8818.72428 < 0.0001 -3325.68768 0.1473 - - 

22a  36.51852 0.9170 767.41910 0.3429 - - 

33a  16.44667 0.6038 436.32772 < 0.0001 - - 

44a  -6.03333 0.4488 -137.50307 < 0.0001 - - 

12a  -295.18981 0.2211 -437.68519 0.4179 0.035677 0.2433 

13a  684.11806 < 0.0001 215.77778 0.1912 0.066624 < 0.0001 

14a  -67.47431 0.0707 60.44444 0.4551 -0.006963 0.1336 

23a  -4.38250 0.9175 -0.816667 0.9932 0.016988 0.0049 

24a  3.99542 0.8503 0.558333 0.9907 -0.000316 0.9069 

34a  163.94287 < 0.0001 212.28500 < 0.0001 -0.001389 0.0987 
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Fig. 4: 3D RS plot of Nuf  for Dp  vs. ep  for different values of wave amplitude 0B  (1st column) and wave frequency                   
n  (2nd column). 

 

  

 

  

Fig. 5: Cube plot of Nuf  (1st row) and Nus  (2nd row) for Dp  vs. ep  vs. 0B  for different values of the wave frequency          
1n =  (1st column) and 3n =  (2nd column). 

 
An response surface plot is a graphical representation of the relationship between multiple independent factors ( Dp , 

ep , 0B , n ) and the response variables ( Nuf , Nus , and Cf ). Figure 4 shows 3D response surface plots that were 
generated to analyze the impact of ( Dp , ep , 0B , n ) on Nuf . Figure 4 illustrates the fascinating interaction of  Dp ,  
ep , 0B , n  on the rate of heat transfer in fluid. The value of Nuf  increases with the increase of these individual input 
parameters keeping other parameter values fixed. However, the maximum heat transfer rate occurs when 0.01Dp = , 

0.95ep = , 0 1.1B = , and 3n = . Similarly, the minimum heat transfer rate in fluid appears for 0.19Dp = , 0.95ep = , 
0 0.1B = , and 1n =  (see, Fig. 5). Besides the maximum and minimum values of Nus  are found for 0.19Dp = , 

0.65ep = , 0 1.1B = , 3n =  and 0.01Dp = , 0.65ep = , 0 0.1B = , 1n = . 
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4. Conclusion 
Numerical simulations were conducted to investigate the effects of heterogeneous permeability and sinusoidal wall 

temperature variations on the heat transfer flow inside a rectangular reservoir with a glass bead porous medium. The study 
aimed to identify the role of various model parameters on the flow and thermal fields. The results showed that the glass 
bead diameter, porosity, frequency, and wave amplitude significantly affected the heat transfer rate and the friction factor. 
The optimum heat transfer rate is determined for the studied input parameters. 
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