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Abstract  Since non-Newtonian fluids are often encountered in engineering devices, the nonlinear boundary layer equations governing 

the flow and heat transfer properties of a non-Newtonian Williamson fluid over a stretching (𝑐 > 0) or shrinking (𝑐 < 0) sheet near the 

stagnation point are analyzed using two closely interrelated approaches. First, employing the shooting argument, it is proved that a unique 

solution exists when 𝑐 ∈  (−1, ∞) and second, using the BVP4C solver in MATLAB, two different solution branches are reported on the 

interval [𝑐𝑇 , −1], where 𝑐𝑇  is the bifurcation point. The 𝑐𝑇  values become more negative with increasing values of the Williamson 

parameter λ, marking the broadening of the solution range. Furthermore, the first solution branch continues for large positive values of 

𝑐, whereas the second branch seems to cease at 𝐹′′(0) = 0 as 𝑐 → −1. The smallest eigenvalue computed using temporal stability analysis 

of these solutions is found positive for the first branch, indicating that this branch is physically stable. These findings are relevant to 
various industrial processes involving non-Newtonian fluids, such as polymer processing and coating applications. Finally, an asymptotic 

expression is derived to provide insights into the behavior of large 𝑐. 

 

Keywords: Williamson fluid, Stagnation point, Stretching or Shrinking, Existence-Uniqueness, Dual solutions, Stability 
analysis, Asymptotic analysis. 

 

 

1. Introduction 
It is common knowledge that many industrial (such as paints and coatings) and physiological (such as blood and plasma) 

fluids exhibit complex flow behavior that the classical Newtonian fluid model cannot adequately describe. To gain a better 
understanding of such fluids, numerous models (non-Newtonian) have been suggested over the years to take into account 

the unique characteristics of these fluids, including their viscoelastic properties, shear-thinning or shear-thickening behavior, 

and time-dependent responses [1, 2]. The nonlinear relationships between the stress tensor and the deformation rate tensor 

for non-Newtonian fluids give rise to complex equations. Undoubtedly, it is challenging to prove the existence and 
uniqueness/non-uniqueness of a solution to these equations and obtain their numerical solution. 

This paper focuses on the robust model put forward by Williamson to describe pseudoplastic fluids [3]. A large number 

of published works, for example, the study of the flow of a thin layer of pseudoplastic fluid over an inclined solid surface 
[4], the peristaltic flow of chyme in the small intestine [5], blood flows through a tapered artery with stenosis [6], and some 

boundary layer flows of Williamson fluid [7], to mention a few, demonstrate the adequacy of Williamson's model in 

describing many frequently observed industrial and physiological fluids like polymer solutions, paints, blood, and plasma. 

Further, one can go through the investigations [8, 9] for Williamson fluid flows in various geometries (especially stagnation 
point flow and stretching/shrinking surface) under diverse physical conditions. Due to its immense engineering and industrial 

applications, the stagnation-point flow of a viscous or non-Newtonian fluid has been the subject of several investigations 

[10, 11]. Another significant aspect of boundary layer flow involves the stretching or shrinking phenomena [12]. 
A review of the literature suggests that the flow generated by a shrinking sheet has recently captured the interest of 

researchers due to its intriguing physical characteristics and growing practical implementations. Wang [11] introduced the 

concept of flow resulting from a shrinking sheet and showed that the solution is not unique to a particular domain. 
Subsequently, several research papers [13-15] have been published addressing the shrinking sheet problem. The works 

mentioned above were devoted to finding multiple solutions and their stability analysis. Analyzing multiple solutions and 

stability is crucial in engineering analysis as it enables the determination of the physical relevance of a steady-state solution. 

In the context of stability analysis, Merkin [16] first found that in time-dependent problems of steady-state flows, only the 
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stable upper branch solution is physically possible, as it has the smallest positive eigenvalue. In contrast, the unstable 

lower branch solution is not physically relevant. Recent studies in references [17, 18] have discussed the stability of 

multiple solutions associated with stretching or shrinking surfaces. 
In the last few decades, numerous investigations have demonstrated the mathematical proof of the existence and 

uniqueness of solutions in boundary layer fluid flow problems. Miklavčič and Wang [19] established the existence and 

uniqueness of the similarity solution for the equation describing the flow caused by a shrinking sheet with suction. 

Gorder et al. [20] examined the results concerning the existence and uniqueness of solutions over the interval [0, ∞) for 
the stagnation-point flow of a hydromagnetic fluid over a stretching or shrinking sheet. Pallet et al. [10] proved the 

existence and uniqueness of a solution for oblique stagnation point flow by using the topological shooting argument.  

However, to the best of the authors' knowledge, only a limited number of articles are devoted to answering the question 
of the existence of a unique solution, see [21, 22] and the references therein for a detailed understanding of the 

methodology used. 

Motivated by the investigations mentioned above and recognizing the widespread applications of problems 
involving stretching/shrinking sheets and non-Newtonian fluids in engineering and industries, we consider the stagnation 

point flow of the Williamson fluid model over a stretching/shrinking surface here. Primarily, the following research 

questions are addressed 

 How can the existence and uniqueness of solutions for the stretching/shrinking parameter 𝑐 > −1 be 

mathematically established? 

 What is the critical point 𝑐𝑇, and how does the nature of the solution change when 𝑐 < 𝑐𝑇? 

 What are the characteristics of dual solutions in the shrinking parameter range 𝑐𝑇 ≤ 𝑐 ≤ −1? 

 How can a linear stability analysis be conducted to identify stable solutions? 

 What are the effects of the non-Newtonian parameter 𝜆 and shrinking parameter 𝑐 (specifically 𝑐 ≤ −1) on the 

velocity and temperature profiles in the dual solution? 

 How do the expressions for shear stresses and the Nusselt number behave for large 𝑐 ? 

 

2. Governing Equations 
Consider a steady, two-dimensional, incompressible flow of Williamson fluid over a horizontal linearly stretching/ 

shrinking sheet with no body force coincides with the plane where 𝑦 = 0. The flow is restricted to the area where 𝑦 > 0. 

The sheet's velocity is represented by 𝑢𝑤(𝑥) = 𝑝1𝑥, where 𝑢𝑒(𝑥) = 𝑏𝑥 (where 𝑏 > 0 ) characterizes the free stream 

velocity. Here, the constant 𝑝1 > 0 represents stretching and 𝑝1 < 0 represents shrinking. Let (𝑢, 𝑣) be the velocity 

component in (𝑥, 𝑦) direction and 𝑇 be the temperature. Following [7], the boundary layer equations are expressed as  

(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =

𝜇0

𝜌
(

𝜕2𝑢

𝜕𝑦2
+ 2Γ

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
) −

1

𝜌

𝜕𝑝

𝜕𝑥
, (1) 

and 

(𝑣
𝜕𝑇

𝜕𝑦
+ 𝑢

𝜕𝑇

𝜕𝑥
) =

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
. (2) 

Here, 𝑝 represents pressure, 𝑐𝑝 indicates the specific heat, 𝑘 represent the thermal conductivity and Γ be time 

constant. Relevant boundary conditions for the stagnation point flow of Williamson fluid over stretching/shrinking sheet 

[7] are 
 (𝑢, 𝑣, 𝑇) = (𝑢𝑤 , 0, 𝑇𝑤) at 𝑦 = 0,  (3)

(𝑢, 𝑇) → (𝑢𝑒 , 𝑇∞)  as 𝑦 → ∞,  (4)
 

where 𝑇𝑤 and 𝑇∞ are the surface and ambient temperature, respectively. Using the Bernoulli equation and neglecting 

the hydrostatic term, −
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑢𝑒

𝑑𝑢𝑒

𝑑𝑥
 , gives  −

1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑏2𝑥.  
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Following the similarity transformations 𝑢 = 𝑏𝑥𝐹′(𝑠), 𝑣 = −√𝑏𝜈𝐹(𝑠), 𝑇 = 𝑇𝑤 + (𝑇𝑤 − 𝑇∞)𝜁(𝑠) [7], where 𝑠 = √
𝑏

𝜈
𝑦, 

 

the equations (1)-(2) become 

𝐹′′′ − 𝐹2 + 1 + 𝐹𝐹′′ + 𝜆𝐹′′𝐹′′′ = 0, (5)

𝜁′′ + Pr𝐹𝜁′ = 0, (6)
 

where 𝜆 = 2Γ𝑥√
𝑏3

𝜈
 be the non-Newtonian Williamson parameter and Pr =

𝜈𝜌𝑐𝑝

𝑘
 is the Prandtl number. Also, the 

boundary conditions (3)-(4) become 

                                            𝐹(0) = 0, 𝐹′(0) = 𝑐, 𝐹′(∞) → 1, 𝜁(0) = 1, 𝑎𝑛𝑑 𝜁(∞) → 0,                                                   (7) 

where 𝑐 =
𝑝1

𝑏
 represents the stretching (𝑐 > 0) or shrinking (𝑐 < 0) parameter.  

3. Existence and uniqueness results for 𝒄 > −𝟏 

3.1 Existence for 𝑭(𝒔)  

The existence of a solution for the boundary value problem in equations (5) and (7) is analyzed using the topological 

shooting method. This method entails the investigation of a corresponding group of initial value problems (IVP), denoted as 

the ODE (5) and (7) (except the condition at ∞ ), in conjunction with an additional initial condition specified as 𝐹′′(0) = 𝑎, 

where 𝑎 can take any arbitrary values. Then, the solution of the IVP depends on both 𝑠 and 𝑎 and is denoted as 𝐹(𝑠; 𝑎). 

Although each 𝑎 yields a solution for the IVP, not all these solutions will satisfy the boundary conditions (7). Therefore, it 

is necessary to determine a suitable value for 𝑎 that satisfies the condition at ∞. To prove the existence of a solution, the 

range 𝑐 > −1 is divided into two parts: −1 < 𝑐 ≤ 1 and 𝑐 > 1. For 𝑐 = 1, the identity function 𝐹(𝑠) = 𝑠 is a solution of 

(5). In this case 𝐹′′(0) = 𝑎 = 0 for all 𝑠, therefore we did not consider the case 𝑐 = 1 in our proof.  

3.1.1 Existence Proof for −𝟏 < 𝒄 < 𝟏  

Let us assume two sets 𝑃 and 𝑄 are subsets of (0, ∞), defined by  

            

𝑃 = {𝑎 > 0: ∃𝑠1 > 0 such that 𝐹′′(𝑠1; 𝑎) = 0 and  𝑐 < 𝐹′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝑠1]}, 

    𝑄 = {𝑎 > 0: ∃𝑠1 > 0 such that 𝐹′(𝑠1; 𝑎) = 1 and 0 < 𝐹′′(𝑠; 𝑎) < 𝑎 𝑓𝑜𝑟 𝑠 ∈ (0, 𝑠1]}.                                  (8)
 

Lemma 1. 𝑃 and 𝑄 are open sets with no elements in common. 

Proof: Clearly 𝑃 and 𝑄 have no element in common. Let 𝑎1 ∈ 𝑃 then ∃ 𝑠1 > 0 such that 𝐹′′(𝑠1; 𝑎1) = 0 and 𝑐 <

𝐹′(𝑠; 𝑎1) < 1 for 𝑠 ∈ (0, 𝑠1]. Since 𝐹′′′(𝑠1; 𝑎1) = (𝐹′(𝑠1; 𝑎1))
2

− 1 ≠ 0, therefore, using the property of continuous 

functions ∃ a neighborhood of 𝑎1 such that for all points in the neighborhood, 𝐹′′′(𝑠) have the same sign as 𝐹′′′(𝑠1; 𝑎1). 

Thus 𝐹′′(𝑠) has a root with 𝑐 < 𝐹′(𝑠) < 1. This shows that 𝑃 is an open set. Similarly, one can prove that 𝑄 is open as well. 

Lemma 2. 𝑃 is non-void. 

Proof: We claim that when 𝑎 is very small, it is in 𝑃. Let 𝑎 = 0, then 𝐹′′′(0; 𝑎) < 0 for all 𝑎. Thus, in a small enough 

vicinity around 𝑠 = 0, it holds that 𝐹′′(𝑠; 0) < 0 and 𝐹′(𝑠, 0) < 1. Then, through the continuous solutions of the IVP, along 

with its initial conditions, there is a positive number 𝑎 for which 𝐹′′(𝑠; 𝑎) < 0 and 𝐹′(𝑠; 𝑎) < 1 hold for all values of 𝑠 in 

the vicinity of 𝑠 = 0. But 𝐹′′(0; 𝑎) = 𝑎 > 0, implies ∃ a 𝛿 > 0 such that 𝐹′′(𝛿; 𝑎) = 0 and 𝐹′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝛿]. 
Hence for small 𝑎 (> 0), it is in 𝑃. 
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Lemma 3. 𝑄 is non-void. 

Proof: We claim that when 𝑎 is very large, it is in 𝑄, that is 𝐹′ = 1 in (0,1] strictly before 𝐹′′ = 0. If this is not the case, 

then the following possibilities must occur : (i) 𝐹′′(𝑠; 𝑎) = 0 for some point in (0,1] for which 𝐹′(𝑠; 𝑎) < 1, (ii) 

𝐹′′(𝑠; 𝑎) > 0 and 𝐹′(𝑠; 𝑎) < 1 in (0,1], and (iii) 𝐹′′(𝑠; 𝑎) = 0 and 𝐹′(𝑠; 𝑎) = 1 occur concurrently. If possible, let 

∃ 𝑐1 ∈ (0,1] such that 𝐹′′(𝑐1; 𝑎) = 0 with 𝑐1 < 𝐹′(𝑠; 𝑎) < 1 for 𝑠 ∈ (0, 𝑐1]. By integrating, we get 𝑐1𝑠 < 𝐹(𝑠; 𝑎) < 𝑠. 

Now let 𝐹‾ = ∫  
𝑠

0

𝐹

1+𝜆𝐹′′ 𝑑𝑡 and integrating (5) from 0 to 𝑠, we get  

𝐹′′(𝑠)𝑒𝐹‾(𝑠) − 𝐹′′(0)𝑒𝐹‾(0) = ∫  
𝑠

0

 
1 − 𝐹′2

1 + 𝜆𝐹′′
𝑑𝑡, (9)

 ⟹ 𝐹′′(𝑠)𝑒𝐹‾(𝑠) = 𝑎 + ∫  
𝑠

0

 
1 − 𝐹2

1 + 𝜆𝐹′′
𝑑𝑡. (10)

 

Let 𝐻 =
1−𝐹′2

1+𝜆𝐹′′ 𝑑𝑡 > 0, then form (10) we have 

𝐹′′(𝑠)𝑒𝐹‾(𝑠) = 𝑎 + 𝐻𝑠. (11) 

Then for 𝑠 ∈ (0, 𝑐1] 

𝐹′′(𝑠) ≥ (𝑎 + 𝐻)𝑒−𝐹‾(𝑠). (12) 

Thus, for large 𝑎, 𝐹′′(𝑠; 𝑎) > 0 for all 𝑠, leading to a contradiction. Similarly, it can be shown that the second 

statement cannot occur for sufficiently large values of 𝑎. If the third case occurs, then from (5), we get 𝐹′′′(𝑠; 𝑎) = 0. 

That implies that 𝐹′(𝑠) = 1, which contradicts the fact that 𝐹′(0) = 𝑐 ≠ 1. Therefore, sufficiently large 𝑎 belongs to 

𝑄. 

Theorem 1. For any 𝜆 ≥ 0, equations (5) and (7) have a solution. Also, the solution is monotone in nature. 

Proof: As (0, ∞) is a connected set, and both 𝑃 and 𝑄 are non-empty, open, and disjoint from each other, it follows 

from the definition of a connected set that the union of 𝑃 and 𝑄 cannot be equal to (0, ∞). Therefore ∃ 𝑙 > 0 such that 

𝑙 ∉ 𝑃 and 𝑙 ∉ 𝑄. Also, Lemma 3 implies that 𝐹′′(𝑠; 𝑙) = 0 and 𝐹′(𝑠; 𝑙) = 1 do not occur simultaneously. Consequently, 

there is only one possibility that 𝐹′′(𝑠; 𝑙) > 0 and 𝑐 ≤ 𝐹′(𝑠; 𝑙) < 1 ∀𝑠. Now, from equation (5), it is observed that as 

𝐹′(∞; 𝑙) approaches 1, implies the existence of a monotonically increasing solution to the boundary value problem (5), 

(7). 

For the case 𝑐 > 1, the proof follows similarly by defining the sets 𝑈 and 𝑉 are subsets of (−∞, 0),   

𝑈 = {𝑎 < 0:  ∃ 𝑠1′ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹′′(𝑠1′; 𝑎) = 0 𝑎𝑛𝑑 1 < 𝐹′(𝑠; 𝑎) < 𝑐 𝑓𝑜𝑟 𝑠  ∈  (0, 𝑠1′]}, 

𝑉 = {𝑎 < 0:  ∃ 𝑠1′ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹′(𝑠1′; 𝑎) = 1 𝑎𝑛𝑑  𝑐 < 𝐹′′(𝑠; 𝑎) < 0 𝑓𝑜𝑟 𝑠  ∈  (0, 𝑠1′]}. 

3.1.2 Uniqueness Proof for −𝟏 < 𝒄 ≤ 𝟏 

Theorem 2. For any 𝜆 ≥ 0, the solution is unique. 

Proof: We will prove this theorem by using the method of contradiction. Let us assume that ∃ 𝑎1, 𝑎2 (values of 

𝐹′′(0)) such that 𝐹(𝑠; 𝑎1) and 𝐹(𝑠; 𝑎2) are the corresponding solutions. Apply MVT on the function 𝐹′ in the interval 

[𝑎1, 𝑎2] and as 𝑠 → ∞ then ∃ 𝑎∗ ∈ [𝑎1, 𝑎2] such that 
𝜕𝐹′

𝜕𝑎
(∞, 𝑎∗) = 0. Next, let 

𝜕𝐹′

𝜕𝑎
= 𝑤′(𝑠; 𝑎) and differentiating (5) 

and using the boundary conditions (7), we have 

                                                    𝑤′′′ − 2𝐹′𝑤′ + 𝜆(𝑤′′′𝐹′′ + 𝐹′′′𝑤′′) + (𝐹′𝑤′ + 𝐹𝑤′′) = 0,                                          (13) 

with 

                                                𝑤(0) = 0, 𝑤′(0) = 0, 𝑤′′(0) = 1, 𝑤′′′(0) =
−𝜆𝐹′′′(0)

1+𝜆𝑎
.                                                    (14)   

Further differentiating (13), we have  
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                                                  𝑤𝑖𝑣(1 + 𝜆𝐹′′) + 2𝜆𝐹′′′𝑤′′′ + 𝜆𝑤′′𝐹𝑖𝑣 − 𝐹′′𝑤′ + 𝐹𝑤′′ = 0.                                           (15) 

Now, from (14), we can say that ∃ 𝑠1 > 0 such that  𝑤′(𝑠; 𝑎) > 0, 𝑤′′(𝑠; 𝑎) > 0, 𝑤′′′(𝑠; 𝑎) < 0 for 𝑠 < 𝑠1. 

Specifically, the function 𝑤′(𝑠; 𝑎) is convex downwards, initially increasing, and it has a maximum value to reach zero. 

Let the maximum value occur at 𝑠2. Consequently, 𝑤′′′(𝑠2; 𝑎) = 0 and 𝑤𝑖𝑣(𝑠; 𝑎) ≤ 0 for 𝑠 < 𝑠2. Also, 𝑤𝑖𝑣(𝑠2) = 0. 

But equation (15) implies 

                               𝑤𝑖𝑣(𝑠2) =
1

1+𝜆𝐹′′(𝑠2)
(−2𝜆𝑤′′′(𝑠2)𝐹′′′(𝑠2) + 𝐹′′(𝑠2)𝑤′(𝑠2)) > 0,                                                     (16) 

a contradiction. However, up until the point 𝑠2 , 𝑤(𝑠; 𝑎) and all its derivatives up to 𝑤′′′(𝑠; 𝑎) are growing positively. Hence, 

𝐹(𝑠; 𝑎) and all its derivatives up to 𝐹′′′(𝑠; 𝑎) are increasing functions. Therefore, for any 𝑎 in the interval [𝑎1, 𝑎2], 

𝑤′(𝑠2 , 𝑎) ≠ 0 which contradicts the MVT of 𝐹′. Hence, the proof is complete. 

For the case c >1, similar to Theorem 2, it can be shown that the solution is unique.  

3.2 Existence for 𝜻(𝒔)  

Theorem 3. If 𝜁(𝑠) is a twice differentiable function satisfying (6) with boundary condition (7), then 𝜁(𝑠) is of the form 

𝜁(𝑠) =
∫  

∞

𝑠
  (𝑒− ∫  

𝑠
0  𝑃𝑟𝐹𝑑𝑠) 𝑑𝑠

∫  
∞

0
 (𝑒− ∫  

𝑠
0  𝑃𝑟𝐹𝑑𝑠) 𝑑𝑠

. (17) 

4. Numerical Results and Discussion 
To validate our results, we compare the values of 𝐹′′(0) (when non-Newtonian parameter 𝜆 = 0 ) on the 

stretching/shrinking sheet with Ishak et al. [13] (see Table 1). An increase in |c| leads to a decrease in the values of 𝐹′′(0) in 

the first solution, while it has the opposite effect in the second solution. In Table 1, 𝐹′′(0) gives two different values for 

some selected negative values of 𝑐, but after crossing the point −1, it provides only a single value. The point 𝑐𝑇 connects 

both solution branches, and when 𝑐 → −1, no such critical point exists, and after crossing the point −1, it becomes a single 

branch. Our theoretical results are also closely connected with the above fact as 𝑐 → −1, 𝐹′′(0) ≥ 0. If  𝐹′′(0) > 0, then 

from (5), it is found that 𝐹′′′(0) = 0. Consequently, 𝐹′′(0) = 0, and all subsequent derivatives are zero at 𝑠 = 0, which 

cannot satisfy the conditions 𝐹′(0) = −1 and 𝐹′(∞) → 1. Therefore, a unique solution exists when  𝑐 > −1, and dual 

solutions occur for 𝑐𝑇 ≤ 𝑐 ≤ −1, and there is no solution for 𝑐 < 𝑐𝑇. The critical point 𝑐𝑇 for λ = 0.1 and 0.3 are −1.24701 

and −1.24768 (see Figs. 1-2). The solution domain expands with increasing 𝜆, and 𝑐𝑇 is more negative for the non-Newtonian 

case than the Newtonian case, highlighting that 𝜆 plays a significant role in the existence of solutions, as supported by 

theoretical results. Fig. 3 demonstrates a significant decrease in the velocity profile 𝐹′(𝑠) with increasing 𝜆 for both solution 

branches. It is observed that the thickness of the momentum boundary layer is larger for Newtonian fluid than for non-

Newtonian fluid. The temperature profile for both solutions increases with the non-Newtonian parameter 𝜆 (see Fig. 4), 

resulting in a rise in the thickness of the thermal boundary layer. Fig. 5 shows that 𝐹′(𝑠) decreases in the first solution but 

increases in the second solution as |𝑐| increases. Conversely, 𝜁(𝑠) increases with |𝑐| in the first solution while decreasing in 

the second solution (see Fig. 6). The momentum and thermal boundary layer thicknesses are found to be smaller in the first 

solution compared to the second solution. In Fig. 7, 𝐹(𝑠) decreases in the first solution but increases in the second solution 

as |𝑐| increases. Initially, each curve shows a decline, reaching certain negative values for small 𝑠. However, these values 

gradually increase and become positive beyond a certain distance from the sheet. In Table 2, the smallest eigenvalues for 

both solutions are computed numerically for different shrinking parameters |𝑐|. In the first solution branch, the eigenvalues 
are observed to be real and positive (indicating a stable solution), while in the second solution branch, they are negative 

(indicating an unstable solution). 
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Fig. 1: Effect of 𝜆 on 𝐹′′(0).              Fig. 2: Effect of  𝜆 on −𝜁′(0). 

 

 

                  
Fig. 3: Effect of 𝜆 on  𝐹′(𝑠).              Fig. 4: Effect of 𝜆 on 𝜁(𝑠).     Fig. 5: Effect of 𝑐 on  𝐹′(𝑠). 

 

                                 
Fig. 6: Effect of 𝑐 on 𝜁(𝑠).                                             Fig. 7: Effect of 𝑐 on 𝐹(𝑠). 
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Table 1: Comparison of 𝐹′′(0) for various values of 𝜆 and 𝑐. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  Smallest eigenvalues for different 𝜆.                             Table 3: Asymptotic values of  𝑐−3/2𝐹′′(0) and 𝑐−1/2𝜁′(0) for 

𝜆 = 0.5 𝑐−3/2. 

 
4 Conclusions 

The research delved into the boundary layer stagnation-point flow and convective heat transfer on a linearly 

stretching/shrinking surface in non-Newtonian Williamson fluid. The main findings of this study can be outlined as follows 

 The existence of a unique solution to the nonlinear equation is proved for stretching/shrinking parameter 𝑐 ∈ (−1, ∞). 

Dual solutions exist for c ∈ [𝑐𝑇, −1], and there does not exist any solutions for 𝑐 ∈ (−∞, 𝑐𝑇). 
 

 The velocity profile 𝐹′(𝑠) decreases with non-Newtonian parameter 𝜆 in both solution branches, whereas the 

temperature profile 𝜁(𝑠) increases with 𝜆. In the first solution branch, the boundary layer thickness (for both momentum 
and thermal) is smaller compared to the second solution branch. Additionally, the solution domain expands with 

increasing 𝜆. 

 

 Stability analysis indicates that the first solution branch is physically acceptable, as all the smallest eigenvalues are 
positive, whereas the second solution branch is unstable. 

 

 An asymptotic solution for large 𝑐 > 0 shows that the expressions 𝐹′′(0)~ − 1.316134 𝑐3/2 and 𝜁′(0) ~ −0.556919 

𝑐1/2 as 𝑐 → ∞. 

 

𝜆 𝑐 Present Ishak [13] 

First Solution Second Solution First Solution Second Solution 

0 -0.25 

-0.50 

-0.75 

-1                      
-1.15             

-1.20            

-1.2465 

1.402240 

1.495669 

1.489298 

1.328816 
1.082231 

0.932473 

0.584291 

-                                       

-                                         

-                                              

0                           
0.116701    

0.233649    

0.554281 

1.402241 

1.495670 

1.489298 

1.328817 
1.082231 

0.932474 

0.584295 

-                                       

-                                         

-                                              

0                           
0.116702    

0.233650    

0.554283 

0.3 -0.25            

-0.75             

-0.9                  

-1                      
-1.12            

-1.18            

-1.22                    
-1.24765                 

-1.24768 

1.254506 

1.321493 

1.262148 

1.187971 
1.036961 

0.911318 

0.778358                             
0.536212 

0.528127 

-                                       

-                                         

-                                                                                 

0                           
0.064495    

0.163578    

0.283952                             
0.519569                               

0.528547 

-                                       

-                                         

-                               

-                                       
-                                         

-                                      

-                                        
-                                      

- 

-                                       

-                                         

-                               

-                                       
-                                         

-                                      

-                                             
-                                           

- 

𝜆 𝑐 First solution Second solution 

0.1 -1.24 

-1.19 

-1.18 

0.157272 

0.573241 

0.627739 

-0.258123 

-0.598794 

-0.638914 
 

0.3 -1.24 

-1.21 

-1.20 

0.016590 

0.341042 

0.405736 

-0.348644 

-0.571240 

-0.618171 
 

𝑐 𝐹′′(0) 𝜁′(0) 𝑐−3/2𝐹′′(0) 𝑐−1/2𝜁′(0) 

5 

20 

60 
100 

200 

 

∞ 

-12.984637 

-115.56896 

-608.62809 
-1312.3680 

-3117.4350 

 
- 

-1.359882 

-2.542579 

-4.342031 
-5.590453 

-7.890453 

 
- 

-1.161381 

-1.292100 

-1.309559 
-1.312368 

-1.314312 

 
-1.316134 

-0.608202 

-0.568538 

-0.560554 
-0.559045 

-0.557939 

 
-0.556919 
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