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Abstract - Numerical methods and “history-contextualized” high-performance computing have been the cornerstone of computational 

fluid dynamics (CFD) for the past 70 years, allowing solving of more and more complex models governing flow physics. In CFD, we 

are at a juncture where it has become possible to use so-called high-fidelity methods to simulate accurate complex flow models, allegedly 

with high accuracy. The primary method for building and quantifying confidence in modeling and simulation is to verify and validate 

computational tools. The focus of this paper is on a widely-used test case used for the verification of compressible flow solvers. We 

report the results for the compressible flow past a 2D NACA 0012 airfoil at Reynolds, Mach, and Prandtl numbers of 𝑅𝑒 = 5,000, 𝑀𝑎 =
0.5, 𝑃𝑟 = 0.72, at zero angle of attack. This test case is reported to be (laminar) steady in the literature. Is that the case? Is this test case 

teaching us something new about the large class of numerical discretizations used in this work? 
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1. Introduction 
Commonly to many disciplines in science, three main approaches are used for studying and understanding fluid 

dynamics: experiments, theoretical analysis, and numerical simulations. In particular, the latter Swiss knife is at the core of 

computational fluid dynamics (CFD). 

During the last 70 years, CFD has earned a respectable place alongside the established theoretical and experimental 
branches of fluid dynamics. In particular, over the previous two decades, CFD has become more powerful than ever because 

massively parallel computing has come within reach of every research group in academia and industry. Nowadays, CFD is 

the method that allows the user to perform virtual experiments that would be too expensive, difficult, dangerous, or 

impossible in the real world. Thus, CFD has the potential to provide unprecedented capabilities to push the boundaries of 
flow physics modeling, analysis, and design. However, such potential will be met if CFD becomes a truly predictive and 

high-fidelity computational tool that can handle many challenging applications requiring the treatment of increasingly 

complex physics in the presence of increasingly complex geometries [1]. 
Users and developers of computational tools always face a critical issue: How should confidence in modeling and 

simulation be critically assessed? Verification and validation of computational simulation tools are the primary methods for 

building and quantifying this confidence. Verification assesses the accuracy of the numerical solution of a model by 

comparison with known solutions. Validation is the assessment of the accuracy of a computational simulation by comparison 
with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the 

relationship between computation and the real world, i.e., experimental data, is the issue. 

During the last decade, with the increasing interest of the research community in the design and application of spatially 
high-order-of-accuracy discretization methods for CFD problems, there has been an imperative need to extend the 

verification methodology to this class of methods. This need was one of the main driving forces which led to a series of 

international workshops and mini-symposia on high-order CFD methods [2]. Early on, among an extensive set of laminar 
and turbulent test cases, the community considered the two-dimensional (2D) NACA 0012 test case at Reynolds, Mach, and 

Prandtl numbers of 𝑅𝑒 = 5,000, 𝑀𝑎 = 0.5, 𝑃𝑟 = 0.72, and zero angle of attack, i.e., 𝐴𝑜𝐴 = 0∘. This is one of the test cases 
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proposed by Swanson and Turkel in 1985 [3] and extensively studied in [4] to evaluate an algorithm for solving the 

steady compressible Navier–Stokes equations. 
To the best of our knowledge, since the work of Swanson and Turkel in 1985 [3], all the results published for this 

test case, including those of the authors of this work, have been obtained using acceleration algorithms (e.g., ℎ- or 𝑝-
multigrid with Runge–Kutta “smoothers”), time stepping or pseudo time stepping techniques, and choices of parameters 
(e.g., large-time steps, damping parameters) adequate to try to converge quickly and efficiently to a steady-state solution. 

These approaches can also “suppress” any potential physical unsteadiness that the flow might have or develop, especially 

when simulating conditions very close to on-set instability. In this context, we ask our-self two questions: Is the 

compressible flow past a 2D NACA 0012 𝑅𝑒 = 5,000, 𝑀𝑎 = 0.5, 𝑃𝑟 = 0.72, and 𝐴𝑜𝐴 = 0∘  truly steady? Can the 
computation of the numerical solution for this flow with a “time accurate” approach teach us more about the properties 

of the discretizations being used? Our reflection originates from “unexpected” numerical results obtained simulating 

this flow – a believed “must-pass” benchmark problem for validating any compressible Navier–Stokes solver with three 
compressible solvers. In this paper, we present results obtained from the high-order accurate entropy-stable spatial 

discretizations available in the SSDC [5] framework. Due to page limitations, we do not include similar results obtained 

with the provably linearly stable high-order accurate spatial discretizations implemented in PyFR [6] and Flexi [7]. We 
may be deceiving ourselves, but at this point, we find it intriguing to share the results we have observed in our ongoing 

study. 

 

2. Governing equations 
The flow simulated in the work is governed by the unsteady compressible Navier–Stokes with the assumption of a 

Newtonian working fluid. These equations are cast into the following compact conservation form: 

∂𝑡𝐔 + ∂𝑗(𝐅ivc + 𝐅vsc) = 0                                                          (1) 

where 𝐔 ∈ ℝ1×𝒩 is the solution-vector, 𝐅ivc ∈ ℝ𝒟×𝒩 and 𝐅vsc ∈ ℝ𝒟×𝒩 are the inviscid and viscous flux vectors, 

respectively. 𝒩 is the number of solution-variables and 𝒟 is the spatial dimension. These quantities are defined as: 

𝐔 =

[
 
 
 
 

𝜌
𝜌𝑣1

𝜌𝑣2

𝜌𝑣3

𝜌𝐸 ]
 
 
 
 

,                                                                     (2a) 

𝐅ivc =

[
 
 
 
 

𝜌𝑣1 𝜌𝑣2 𝜌𝑣3

𝑝 + 𝜌𝑣1𝑣1 𝜌𝑣1𝑣2 𝜌𝑣1𝑣3

𝜌𝑣2𝑣1 𝑝 + 𝜌𝑣2𝑣2 𝜌𝑣2𝑣3

𝜌𝑣3𝑣1 𝜌𝑣3𝑣2 𝑝 + 𝜌𝑣3𝑣3

𝜌𝑣1𝐻 𝜌𝑣2𝐻 𝜌𝑣3𝐻 ]
 
 
 
 

 ,  𝐅vsc =

[
 
 
 
 

0 0 0
−𝜏11 −𝜏12 −𝜏13

−𝜏21 −𝜏22 −𝜏23

−𝜏31 −𝜏32 −𝜏33

−𝑣𝑖𝜏𝑖1 − 𝜔1 −𝑣𝑖𝜏𝑖2 − 𝜔2 −𝑣𝑖𝜏𝑖3 − 𝜔3]
 
 
 
 

 . (2b) 

Einstein summation convention is used for repeated indices 𝑖. The symbols used in the equations above are as follows. 𝜌 is 

the density, 𝐯 = 𝐞𝑖𝑣𝑖 is the velocity vector with 𝐞𝑖 being the 𝑖-th orthonormal basis vector of Euclidean space, 𝐸 is the total 

energy per unit mass, i.e., 𝐸 = 𝑒 +
1

2
𝑣𝑖𝑣𝑖 where 𝑒 is the internal energy. For a calorically perfect gas, 𝑒 =

𝑅𝑇

𝛾−1
 where 𝑅 is 

the gas constant and 𝑇 is the temperature determined as 𝑇 = 𝛾M
2𝑝/𝜌. The total enthalpy 𝐻 is defined as 𝐻 = 𝐸 +

𝑝

𝜌
 where 

𝑝 is the pressure, related to energy through the ideal gas law: 𝑝 = 𝜌(𝛾 − 1) (𝐸 −
1

2
𝑣𝑖𝑣𝑖) where 𝛾 is the specific heat ratio. 

𝜏𝑖𝑗 are the components of the viscous stress tensor 𝜏. For compressible Newtonian fluids, we have 𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 and 𝑆𝑖𝑗 =
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1

2
(∂𝑖𝑣𝑗 + ∂𝑗𝑣𝑖) −

1

3
∂𝑘𝑣𝑘𝛿𝑖𝑗, where 𝜇 is the dynamic viscosity which is assumed to be constant. 𝜔𝑗 = 𝜆 ∂𝑗𝑇 is the 𝑗-th 

component of the heat flux vector where 𝜆 =
𝛾𝑅

𝛾−1

𝜇

Pr
 is the molecular conductivity. 

 

3. Results and discussion 
We solve the system of Equations (1) with the definitions (2) to investigate the flow around a 2D NACA0012 profile at 

a Reynolds’ number of 𝑅𝑒 = 5,000, Mach’s number of 𝑀𝑎 = 0.5, and Prandtl number of 𝑃𝑟 = 0.72. The angle of attack is 

𝐴𝑜𝐴 = 0∘. In this preliminary work, we perform the time advancement flow problem using the 3(2) pair of explicit Runge–
Kutta scheme of Bogacki and Shampine (3BS scheme), and the first-order backward difference methods, also known as 

backward Euler schemes. 

We use four structured grids with different element densities and element types, all refined smoothly near the airfoil 

trailing edge and wake. The grids are generated using Gmsh [9]; smooth quadratic and cubic elements are used to represent 
the airfoil geometry. Figure 1 reports a visual view of these grids. Because of the page limit and to avoid unnecessary 

repetitions, below, we report solely the results computed using the entropy stable SSDC solver [5]. However, analogous 

results have been obtained using the provably linearly stable high-order accurate algorithms implemented in the PyFR [6] 

and Flexi [7] solvers. 
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(a) Structured mesh with 1,216 quadrangles. 

 

(b) Structure mesh with 13,800 quadrangles. 

 

(c) Structure mesh with 5,904 triangles. 

 

(d) Structure mesh with 15,274 quadrangles. 

 
Fig. 1: Overview of the four grids. 

 

To study the convergence to a steady-state solution, we present the time evolution of the residual, i.e., 𝐿2-norm of the 

term ∂𝑗(𝐅ivc + 𝐅vsc) in Equation (1) for the momentum in the horizontal direction, i.e., the direction of the incoming flow 

upstream of the NACA0012 airfoil. Note that for a steady-state solution, all the components of the residual vector for the 

conserved variable vector should be zero, or, for a steady solution computed numerically, the residual components should 

be close to machine precision. 

Solid wall no-slip wall boundary conditions are imposed on the airfoil surface. Uniform laminar flow corresponding 

to 𝑅𝑒 = 5,000, 𝑀𝑎 = 0.5, and 𝑃𝑟 = 0.72 is imposed at the incoming flow. We use a “sponge zone” approach to suppress 

spurious reflections at the outlet boundary. The initial condition is also set to a uniform flow. All the simulations are 

performed in double (machine) precision. 

We perform the simulations using four solution polynomial degrees: 𝑑𝑒𝑔 = 1, 2, 3, and 4, corresponding to second-, 

third-, fourth-, and fifth-order accurate spatial discretizations. Figures 2a and 2b show the iso-contours of the velocity 

magnitude for the solutions computed with 𝑑𝑒𝑔 = 1 and 𝑑𝑒𝑔 = 2 using the grid with 1,216 quadrangle elements (see Figure 
1a). The first results are computed using the 3BS scheme for time advancement. The time evolution of the residual for all 



 

 

 

 

 

 

 

146-5 

the solution polynomial degrees used is shown in Figure 2c. The solution for 𝑑𝑒𝑔 = 1 in Figure 2a appears laminar and 

steady. However, upon inspection of Figure 2c, we observe that the residual associated to 𝑑𝑒𝑔 = 1 decreases monotonically 

and then stagnates right below 10−5. It remains like that for the rest of the simulation. Thus, the solution computed with 

𝑑𝑒𝑔 = 1 cannot be considered a converged steady-state solution. Furthermore, we tested the same setup for 𝑑𝑒𝑔 = 1 using 

two levels of uniform mesh refinement and the residual behaves in the same way stagnating monotonically around 10−5, 

and no pronounced unsteadiness/asymmetry in the wake can be detected. In contrast, for all the other degrees used, i.e., 

𝑑𝑒𝑔 ≥ 2, we observe that the residual decreases, and then after a small oscillation, it rapidly increases until it stagnates just 

below a value of 100, i.e., 𝑂(1). The attained value of the residual is practically the same for all the degrees 𝑑𝑒𝑔 ≥ 2. The 
unsteadiness in the solution is visible in the wake in Figure 2b. To conclude this first part of the results, we highlight behavior 

discrepancies among the same family of spatial discretizations in this first instance. It seems that for 𝑑𝑒𝑔 ≥ 2, some physical 

or numerically-driven instability appears and triggers the residual growth, leading to a visible unstable wake. Could this 

indicate a flow on the verge of becoming (laminar) unsteady? Or is this and an indication that the schemes with 𝑑𝑒𝑔 ≥ 2 in 

SSDC [5], PyFR [6], and Flexi [7] are exhibiting some unexpected behavior? An ongoing detailed analysis should be able 

to provide more information, and by the time of the presentation of this work, we should be able to provide complete or 

almost complete answers to these questions. 

 
𝑑𝑒𝑔 = 1 

 
𝑑𝑒𝑔 = 2 

 

 
            Residual for 𝑑𝑒𝑔 = 1,2,3, and 4. 

 

Fig. 2: Iso-contours of the velocity magnitude for solution polynomial degree (a) 𝑑𝑒𝑔 = 1, and (b) 𝑑𝑒𝑔 = 2 computed using the 3BS 
scheme for time advancement. History of the residual in the wind (i.e., horizontal) direction for all solution polynomial degrees. The 

simulations ran on the 1,216 quadrangle elements (see Figure 1a).  

 
We now turn our attention to the behavior of the numerical solution when we use different the four grids with different 

mesh resolutions and element types shown in Figure 1. We use again the 3BS scheme for time advancement. Figure 3 shows 

the residual history using 𝑑𝑒𝑔 = 2 for all the four grids. Also, in this case, the residual decreases, and then after a small 
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oscillation, it rapidly increases until it stagnates just below a value of 100, i.e., 𝑂(1), leading to an unsteady wake, as shown 

in the iso-contour of the velocity magnitude in Figure 3. The described residual behavior is apparent for all the grids, but for 
that one tagged as “mesh3” in Figure 3. This grid corresponds to the mesh shown in Figure 1c, composed of triangular 

elements. The residual obtained using the “mesh3” grid decreases monotonically and plateau around a value of 10−1, one 

order of magnitude lower than the value reached using the other grids. Nevertheless, the numerically computed solution is 
not a converged steady-state solution. It is important to note that if we use the same problem settings and perform a simulation 

using the “mesh3” grid and one level of uniform mesh refinement, the residual behaves like the residual of the other three 

meshes, i.e., it decreases, experiences a quick oscillation, then grows and reaches approximately the value 100 and plateaus 

there. 

 

 
Fig. 3: History of the residual in the wind (i.e., horizontal) direction for 𝑑𝑒𝑔 = 2 solution polynomial degree computed with the 3BS 

scheme and the four grids shown in Figure 1. 

 

To conclude the sets of results, we now focus on the behavior of the algorithms/solvers and solution when using the 

backward Euler (BE) scheme with a relatively “small” and a relatively “large” time step that is 𝑑Δ𝑡 = 1𝑒 − 3 and Δ𝑡 = 1𝑒 −
1, respectively. For this test, we use the structured grid with the highest density of elements shown in Figure 1d. 

The last results we want to discuss are shown in Figure 4. This figure contains the history of the residual in the wind 

(i.e., horizontal) direction for 𝑑𝑒𝑔 = 2 solution polynomial degree and the contour plots of the velocity magnitude in two 

different solution states. 

The curve of the residual is a composition of different curves obtained using different algorithmic setups. The first 

part of the curve (i.e., the black dash-dot portion) is obtained by starting from a uniform flow condition and advancing the 

time using the BE scheme with a time step of Δ𝑡 = 1𝑒 − 3. We observe that the residual behaves like the results shown in 

Figures 2c and 3, that is, it decreases, and then after a small oscillation, it rapidly increases until it stagnates just below a 

value of 100, i.e., 𝑂(1). At that point, we restart the simulations using the same spatial and temporal discretizations and a 

larger time step, i.e., Δ𝑡 = 1𝑒 − 1. The brown dash-dot line illustrates the behavior of the residual as a function of time. We 

observe that rapidly, the value decreases and plateaus near 10−12, practically zero machine precision. A residual value of 

10−12 is the lowest value in double precision we can achieve with our problem setup, computing hardware, and any 

acceleration technique such as ℎ- and 𝑝-multigrid. Thus, if the solution is steady-state, at this level, the BE scheme used as 

a smoother should have removed any error. The solution obtained at this point is a “converged” and steady-state solution, as 

shown in the first contour plot of the velocity magnitude tagged with (a) in Figure 4 and corresponding to the residual point 

indicated with a red 𝑋. This solution has been extensively published in the literature since the work of Swanson and Turkel 

in 1985 [3]. The right panel of Figure 5 shows the corresponding lift and drag coefficients. 
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Fig. 4: History of the residual in the wind (i.e., horizontal) direction for 𝑑𝑒𝑔 = 2 solution polynomial degree computed with the BE 

scheme and the grid shown in Figure 1d. 

The steady-state values of these two coefficients are close to those published in the literature. An additional mesh 

refinement would yield values very close to those indicated in [4]. However, this is not the main objective of this short 

overview of our results. 

The brown line is intercepted by an orange dahs-dot line, which, for a moment, we neglect to focus on the next segment 
of the residual curve, indicated with the yellow dashed line. This yellow portion shows what happens when we restart the 

simulation with the 3BS scheme using the largest admissible time step (admissible for stability). A similar behavior can be 

observed by restarting with a smaller time step of the order 10−8. We observe that the residual grows rapidly and plateaus 

at the same level attained by the BE when run with a Δ𝑡 = 1𝑒 − 3. This state corresponds to an unsteady solution as shown 

in the second contour plot of the velocity magnitude tagged with (b) in Figure 4. The left panel of Figure 5 shows the 

corresponding lift and drag coefficients, which are not constant but time-dependent. In particular, the lift coefficient is 

symmetric concerning the horizontal axis, which defines the zero value, i.e., its average value. Nevertheless, as expected, 

their variation is very small. 

Finally, we can focus on the orange portion of the curve. This part is obtained by restarting the simulation with the BE 

scheme and using a time step of Δ = 1𝑒 − 3, i.e., what we consider a “small” time step for this problem. The solution state 

from which we restarted corresponds to a value of the residual approximately equal to 5 × 10−10. As for the case represented 

by the yellow curve, the residual rapidly increases and plateaus close to the value characteristics of the black and yellow 

lines, leading to an unsteady solution. 

 

Fig. 5: Lift and drag coefficients 𝐶𝑙 and 𝐶𝑑. 
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4. Conclusion 
In this work, we have presented some of the results of an ongoing analysis that focuses on a geometrically simple yet 

interesting compressible laminar flow around a 2D NACA 0012 airfoil at 𝑅𝑒 = 5,000, 𝑀𝑎 = 0.5, 𝑃𝑟 = 0.72, and 𝐴𝑜𝐴 =
0∘. This flow problem has been widely used for a long time to assess the accuracy and reliability of compressible solvers for 

both low- and high-order accurate CFD solvers. The results presented in this work have been validated using three fully 
independent compressible flow frameworks, namely SSDC [5], PyFR [6], and Flexi [7]. However, we only presented the 

results computed with the SSDC solver due to page limitations. The findings have led us to ask ourselves the following 

questions: Is the compressible flow past a 2D NACA 0012 𝑅𝑒 = 5,000, 𝑀𝑎 = 0.5, 𝑃𝑟 = 0.72, and 𝐴𝑜𝐴 = 0∘ truly steady? 
Can the computation of the numerical solution for this flow with a “time accurate” approach teach us more about the 

properties of the discretizations being used? In the near future, we should be able to provide some answers to these questions. 
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