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Abstract – Surface tension, wetting, and contact line dynamics are critical to understanding flows involving interactions between 

different phases, such as liquid-liquid, liquid-gas, and liquid-solid interfaces. Accurately capturing the effects of surface tension and 

contact angle hysteresis is essential for enhancing simulation fidelity. This paper presents a methodology that integrates surface tension 

and contact angle force models within the Multiphase Lagrangian Differencing Dynamics (MP-LDD) framework. The pressure jump due 

to surface tension and the mobility of the contact angle are implicitly incorporated into the pressure equation using the Young-Laplace 

equation, yielding a good initial guess in the pressure calculation to improve the stability and convergence. Simultaneously, the 

corresponding volumetric force is integrated into the velocity equation, providing a comprehensive and accurate representation of 
interfacial dynamics. The MP-LDD framework focuses on the immediate vicinity of the interface, enabling sharper and more precise 

calculations of surface interactions without relying on ghost particles or complex extrapolations. The approach achieves faster 

computations by leveraging the dynamic contact angle (DCA) model without curvature calculations and eliminates instabilities caused 

by abrupt curvature changes. Additionally, the second-order consistency of MP-LDD enhances predictive accuracy. The direct operation 

on surface meshes allows precise identification of solid boundaries and accurate application of forces at the triple point. Validation against 

benchmark cases demonstrates the robustness and effectiveness of the proposed methodology in simulating complex multiphase flow 

scenarios, establishing it as a reliable and efficient tool for interfacial flow simulations. 
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1. Introduction 
Surface tension plays a fundamental role in multiphase flow simulations, influencing interface dynamics across various 

fluid systems. Several computational methods have been developed to model surface tension effects efficiently. The 

Continuum Surface Force (CSF) method treats surface tension as a distributed force across the interface, facilitating large-
scale simulations without explicit interface tracking [1]. Sharp interface methods directly impose the Young-Laplace 

equation, ensuring precise pressure jumps for applications in droplet dynamics and bubble formation [2]. The Ghost Fluid 

Method (GFM) enforces jump conditions using ghost cells, maintaining sharp property representation while minimizing 
numerical errors [3]. Diffuse Interface Models (DIM) represent the interface as a continuous transition between phases, 

effectively capturing capillary waves and phase separation without explicit tracking [4]. The Lattice-Boltzmann Method 

(LBM) incorporates surface tension via particle interactions, making it particularly useful for porous media and microfluidic 

applications [5]. Additionally, Smoothed Particle Hydrodynamics (SPH) employs a meshless framework to compute surface 
tension forces, ideal for scenarios with significant interfacial deformation, such as free-surface flows [6].Dynamic wetting 

behavior is another critical aspect of multiphase systems, often described through Dynamic Contact Angle (DCA) models. 

These models extend Young’s equation (1805), which defines equilibrium contact angles [7], and Laplace’s formulation 
(1806) for capillary action and pressure differences across curved interfaces [8]. The concept of contact angle hysteresis, 

introduced by Harkins & Jordan (1930), accounts for variations between advancing and receding angles [9], while Blake & 

Haynes (1969) linked dynamic angles to interfacial kinetics [10]. Subsequent developments, including the Cox-Voinov law 

(1976) [12], Tanner’s correlation (1979) [13], and Kistler’s extension (1993) [14], refined the relationship between velocity 
and contact angle changes. Advanced models, such as Shikhmurzaev’s phenomenological approach (1997) [15], Yokoi et 

al.'s regime-based framework (2009) [17], and Snoeijer & Andreotti’s contact line friction model (2013) [18], further enhance 
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wetting predictions. More recent studies, including Ludwicki et al. (2022) [19], focus on contact-line mobility, improving 

dynamic wetting simulations. 
This paper presents a methodology for integrating surface tension and contact angle models within the MP-LDD 

framework [20, 21, 22]. By incorporating these forces into the pressure and velocity equations, the approach enhances 

simulation accuracy and stability. Surface tension effects are handled via the Young-Laplace equation, ensuring smooth 
pressure gradients, while volumetric forces is incorporated into the velocity equation, providing a comprehensive 

representation of interfacial dynamics. The use of the dynamic contact angle (DCA) model eliminates curvature calculations, 

boosting efficiency and preventing instabilities. The MP-LDD framework maintains a sharp interface without additional 

computational overhead, offering a reliable and efficient solution for complex multiphase flow simulations with second-
order consistency [20, 21, 22]. 

 

2. Governing Equations 
The Navier-Stokes equations governing incompressible fluids are expressed as follows: 

 

𝛻 ∙ 𝒖 = 0 (1) 

  

𝐷𝒖

𝐷𝑡
=

−𝛻𝑝

𝜌
+ 𝜈𝛻2𝒖 + 𝒈 +

1

𝜌
𝑭𝑠+𝑑 (2) 

 

where, D/Dt is a material derivative, also known as the convective or substantial derivative, 𝒖 represents the velocity 

field, 𝜌 is the fluid density, 𝑝 denotes the pressure, 𝜈 is the kinematic viscosity, 𝒈 stands for acceleration due to gravity and  

𝑭𝑠+𝑑 signifies the force due to surface tension plus dynamic contact angle per unit volume. The continuity  

𝛻 ∙ 𝒖 = 0 ensures the incompressibility of the fluid, indicating that there are no sources or sinks within the fluid. The 

Momentum Equation (2) is based on the Lagrangian perspective, accounts for pressure gradients, viscous diffusion, 

gravitational forces, and surface tension forces. 
Solving the Navier-Stokes Equation (2) for incompressible flow involves determining both the pressure and velocity fields 

within a discretized computational domain. The pressure field is typically computed using the Pressure Poisson Equation 

(PPE) as below [20, 21]:  

∇ ∙ (
𝛻𝑝

𝜌
) = −∇ ∙

𝐷𝒖

𝐷𝑡
 (3) 

 

The velocity field is typically computed as below [20, 21]: 
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Pressure and velocity equations are solved with MP-LDD discretization, and the gradient variable Laplacian 
approximation are given by [22]: 

⟨∇𝑓⟩ 𝑖 =  𝑩𝑖 ∑ 𝑊𝑖𝑗𝒙𝑖𝑗(𝑓𝑗 − 𝑓𝑖 )

𝑗

 (5) 
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Where, 𝐿𝑖𝑗 =  𝑊𝑖𝑗  (1 −  𝒙𝑖𝑗 .𝑩𝑖  𝒐𝑖),  𝑓 is the function, 𝑩𝑖 is renormalised tensor,  𝒐𝑖 is offset vector, 𝒙𝑖𝑗  is distance vector between point 

(𝑖) and (𝑗),  𝑊𝑖𝑗  is weight function, and 𝑑 is dimension of the problem. One of the advantages of the Lagrangian Differencing 

Dynamics (LDD) approach is that it operates directly on surface meshes. In this method, solid points are determined by 
projecting fluid points that are adjacent to the solid interface. This feature makes it much easier to accurately identify the 

boundaries of solid objects. 

 

3. Surface Tension 
Surface tension is a phenomenon that occurs at the interface between two phases. It plays a critical role in multiphase 

flows, influencing various phenomena such as droplet formation, interface stability, and capillary waves. The effects of 
surface tension need to be integrated with pressure and velocity calculations. Due to surface tension, there is a pressure jump 

across the interface, which can be calculated using the Young-Laplace equation. This pressure jump is then added to the 

pressure term as initial guess while solving pressure, as indicated below: 

 

𝑝(𝑖) = 𝜎 𝛿𝑟/𝜌𝑖 (8) 
 

where, 𝜎 is surface tension coefficient and 𝛿𝑟 is spacing (distance between the points). The pressure value is updated using 

Equation (6) before calculating the pressure with Equation (3). This update accounts for a pressure jump that is equivalent 
to the surface tension force at the interface. Additionally, Continuum Surface Tension is applied to incorporate the surface 

tension force into the velocity equation as below: 

 
𝑭𝑠 = 𝒏 ̂𝜎 𝜅 𝛿𝑟/𝜌 (9) 

 

where, 𝑭𝑠 is surface tension force per unit volume, 𝑛̂ is the interfacial normal and 𝜅 is curvature. The following is added to 

the right-hand side of the velocity equation.  
 

𝒏 =
∇𝜌

𝜌𝑑𝑖𝑓𝑓
 ; 𝒏 ̂ =

𝒏

∥ 𝒏 ∥
;  𝜅 = −(∇ ∙ 𝒏 ̂) (10) 

 

here, 𝜌𝑑𝑖𝑓𝑓 is an absolute difference of the density of two phases and it is constant.  

 

4. Contact Angle  

Dynamic contact angle (𝜃𝑑) is a crucial parameter in modeling wetting phenomena, particularly in multiphase flows 
involving fluid-solid interfaces. It accounts for both static and dynamic effects, such as surface tension and contact line 

motion. The dynamic contact angle (𝜃𝑑) is determined by incorporating both static and dynamic effects. The radii of the 

advancing (𝑟𝐴) and receding (𝑟𝑅) contact lines are derived based on the measured maximum dynamic advancing (𝜃𝑚𝑑𝑎) and 

receding (𝜃𝑚𝑑𝑟) angle: 
 

𝑟𝐴 = √
𝑠𝑖𝑛3(𝜃𝑚𝑑𝑎)

2−3𝑐𝑜𝑠(𝜃𝑚𝑑𝑎)+𝑐𝑜𝑠(𝜃𝑚𝑑𝑎)

3
  ; 𝑟𝑅 = √

𝑠𝑖𝑛3(𝜃𝑚𝑑𝑟)

2−3𝑐𝑜𝑠(𝜃𝑚𝑑𝑟)+𝑐𝑜𝑠(𝜃𝑚𝑑𝑟)

3
 (11) 

 

The static contact angle (𝜃𝑠) is computed using the weighted contributions of 𝑟𝐴 and 𝑟𝑅, reflecting the curvature of the 
interface: 

 

𝜃𝑠 = 𝑐𝑜𝑠−1 (
𝑟𝐴 cos(𝜃𝑚𝑑𝑎) + 𝑟𝑅 cos(𝜃𝑚𝑑𝑟) 

𝑟𝐴 + 𝑟𝑅
) (12) 
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Include the effect of tangential velocity at the contact line, a correction term is added. 

  

∆𝜃 = (𝜃𝑚𝑑𝑎 −  𝜃𝑚𝑑𝑟) ∙ tanh (𝒖𝑡𝑎𝑛 ∙ 𝒏𝑡𝑎𝑛) 
(13) 

 

here, 𝒖𝑡𝑎𝑛 is tangential velocity to the wall and 𝒏𝑡𝑎𝑛 is normal tangential to the wall. ∆𝜃 term adjusts the static contact angle 

(𝜃𝑠) to account for fluid motion. Then the dynamic contact angle (𝜃𝑑) is as follow:  
 

𝜃𝑑 = 𝜃𝑠 + ∆𝜃 (14) 
 

Acceleration is based on the difference between target and current angles and converts them to force. Net force in tangential 

direction per unit volume, due to dynamic contact angle can be computed as below: 

 

𝑭𝑑 =  𝒏𝑡𝑎𝑛 ∙ 𝐷𝐶𝐴𝑐𝑜𝑒𝑓(𝜃𝑑 − 𝜃𝑐𝑢𝑟𝑟)/𝜌  (15) 

 

where 𝜃𝑐𝑢𝑟𝑟 = 𝑐𝑜𝑠−1(−𝒏𝑤𝑎𝑙𝑙 ∙ 𝒏) is current angle and 𝐷𝐶𝐴𝑐𝑜𝑒𝑓 =  𝜎 𝛿𝑟2. The pressure difference at the interface caused 

by the dynamic contact angle is calculated and added to pressure term as initial guess while solving pressure:  
 

𝑝(𝑖) = 𝜎 𝛿𝑟(𝜃𝑑 − 𝜃𝑐𝑢𝑟𝑟)/𝜌 (16) 

 
5. Validations 
5.1. Square droplet - non-equilibrium oscillation 

The oscillation of liquid droplets under the influence of surface tension is a fundamental phenomenon in multiphase 

fluid dynamics. Accurate simulation of this phenomenon is crucial for validating surface tension models in computational 
frameworks, particularly under simplified conditions where gravity is absent and unbalanced surface tension acts as the 

primary restoring force [24]. To validate the surface tension model, the oscillation of a square ethanol droplet in a quiescent 

fluid due to unbalanced surface tension forces is simulated, as illustrated in Figure 1(Left). The ethanol droplet, with a side 
length of 0.075 m, is surrounded by a low-density fluid with no-slip wall boundaries. The ethanol properties are density 

(797.88 kg/m3) kinematic viscosity (1.4e-6 m2/s) and surface tension coefficient (0.02361 N/m), while the surrounding fluid 

has a density (1 kg/m3) and a kinematic viscosity (1e-5 m2/s).  
 

 
 

Fig. 1: Case setup (Left) and oscillation result of a square droplet at different time steps (Right). 
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Square droplet starts oscillating due to the surface tension force. The oscillation frequency is analytically determined, 

with the corresponding period calculated as 1.299 seconds for the first complete cycle. This result closely aligns with the 
numerical method outcomes, as illustrated in Figure 1 (Right) for oscillation mode 4. Such an agreement underscores the 

accuracy of the implemented surface tension model in predicting droplet oscillation dynamics. 
 

5.2. Bubble raising 

The bubble rising problem with a high surface tension was replicated based on the study by Hysing et al. [23]. A 2D 

two fluid static interface test case within a 1 × 2 rectangular domain, featuring a circular region (radius 0.5) centered at (0.5, 
0.5) occupied by fluid 2, while the surrounding region is filled with fluid 1. No-slip boundary conditions are applied at the 

top and bottom walls, and horizontal velocity is enforced on the side walls. Fluid properties are mentioned in the Table 1. 

 

Table 1: Fluid parameters used in the simulation 

𝜌1(kg/m3) 𝜌2(kg/m3) 𝜇1(Pa.s) 𝜇2(Pa.s) 𝒈(m/s2) 𝜎(N/m) 

1000 100 10 1 0.98 24.5 

 

 
Fig. 2: Comparison of bubble raising with high surface tension is compared with Hysing et al. [20] (White dots) at 3 sec 

 

 
Fig. 3: The movement of center of mass of the bubble at different time steps was compared with Hysing et al [20] (Left) and Raising 

velocity of the bubble at different time steps was compared with Hysing et al [23] (Right). 
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The simulation was carried out using the proposed MP-LDD method, and the results were compared with the benchmark 

data from Hysing et al. to evaluate accuracy and reliability. Figure 2 illustrates the bubble's shape and position at t = 3 s , 
where the white dots represent the reference data from Hysing et al. The MP-LDD method demonstrates a close match with 

the benchmark, capturing the sharp interface and maintaining numerical stability. The center of mass of the bubble was 

tracked over time, and the comparison with Hysing et al. is shown in Figure 3 (Left). The results highlight the accuracy of 
the MP-LDD method in predicting the upward motion of the bubble, maintaining a consistent alignment with the benchmark 

values throughout the simulation. The bubble's rising velocity was also examined and compared to the benchmark data, as 

shown in Figure 3 (Right). The MP-LDD method accurately captures the peak velocity and the subsequent stabilization 

phase, indicating its capability to handle high surface tension flows while maintaining sharp and stable interfaces. These 
comparisons validate the robustness and reliability of the MP-LDD method for simulating complex multiphase flows 

involving surface tension and interface dynamics. 
 
5.3 Static contact angle on square droplet 

To validate the numerical setup and simulation accuracy, a square ethanol droplet (0.06 m × 0.06 m) with a density of 

𝜌𝑑= 797.88 kg/m3 and surface tension 𝜎 = 0.02361 N/m was placed in a background fluid of density 𝜌𝑏=1.0 kg/m3 and 

viscosity 𝜇𝑑=1e-2 Pa.s. The effects of gravity and other external forces were neglected to focus purely on the capillary-driven 
behaviour of the droplet [24]. 

 

 
Fig. 4: Equilibrium contact angle study of a square ethanol droplet at different static contact angles (30° to 180°) 

 

The system was tested for various static contact angles, 𝜃𝑠, ranging from 30° to 180°. The resulting equilibrium 
configurations of the droplet at T=0.1 s for each contact angle is presented in Figure 4. These configurations were analyzed 

to confirm the consistency of the contact angle with the imposed 𝜃𝑠, as well as to assess the symmetry and stability of the 

droplet profile. The droplet deformation was studied under the assumption of a static equilibrium state. The results 

demonstrate clear adherence to the prescribed contact angles, with the droplet shape transitioning from a flattened dome (𝜃𝑠 

= 30°) to a semicircular (𝜃𝑠 = 90°), and finally to an increasingly spherical shape (𝜃𝑠 = 150° and 𝜃𝑠 = 180°) as the contact 

angle increased. These results are consistent with theoretical expectations for static contact angle behavior in the absence of 
external forces. This validation confirms the reliability of the numerical method in reproducing equilibrium droplet shapes 

governed by surface tension and contact angle conditions. 
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5.4 Effect of surface tension and Dynamic contact angle  

The spreading of semi-water droplets with radius of 0.5 m placed on a surface with gravitational force was studied 

under three configurations to analyze the effects of surface tension (ST) and dynamic contact angle (DCA): (1) No ST + No 

DCA, (2) ST + No DCA, and (3) ST + DCA. Figure 5 (Left) explains that the absence of ST and DCA, the droplet spreads 
maximally with a large footprint and reduced height. Adding ST significantly reduces the spreading length, much smaller 

than the case with both ST and DCA, which shows a moderately constrained footprint and the highest central height due to 

additional constraints from contact angle dynamics. Also effect of surface energy of the contact surface. These findings 
emphasize the critical role of ST and DCA in controlling droplet behavior, with implications for applications in coatings, 

lubrication, and material science. 
 

 

 
 
 
 

 
 
 
 

 
 
 Fig. 5: Comparison of Droplet Spreading under Different Configurations of Surface Tension (ST) and Dynamic Contact Angle (DCA) 

at 0.1 sec (Left) and spread length comparison No ST + No DCA (red), ST + No DCA (blue) and ST + DCA (yellow) (Right). 

 
6. Conclusion 

In this study, we developed and validated a methodology for integrating surface tension and contact angle force models 

within the MP-LDD framework. By avoiding curvature calculations in the dynamic contact angle (DCA) model, our 

approach achieves faster computations and eliminates instabilities caused by abrupt curvature changes. Incorporating surface 

tension and contact angle dynamics into the pressure and velocity equations resulted in smoother pressure gradients and 
accurate interfacial dynamics. The second-order consistency of MP-LDD, combined with its focus only on adjacent interface 

layers and direct surface mesh operations, enabled precise and efficient simulations. Validation against benchmark cases 

demonstrated the method’s effectiveness, establishing it as a reliable tool for simulating complex multiphase flows. Future 
work will extend this framework to non-Newtonian fluids and dynamic contact line phenomena. 
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