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Abstract - Porous materials are defined as materials consisting of a ‘matrix’ in which the voids are filled with gas or liquid. 
Porous materials also include biological tissues, because they consist of dispersed cells isolated by voids (pores) through 
which nutrients flow to all cells in them. An example of such tissue is articular cartilage, in which the size of the pores is 
estimated to be between 2 nm and 6 nm. The study involved determining the diffusion coefficient value for a selected tissue 
(articular cartilage) during cooling, assuming a model for homogeneous and porous material. The results obtained confirm 
that the applied material model impacts on the values of the diffusion coefficient. Higher coefficient values were obtained 

for the model taking into account the porosity of the sample than for the homogeneous material model. In addition, a decrease 
in temperature causes a decrease in the diffusion coefficient value. The results obtained can be used in the future to analyse 
the behaviour of a biological sample during the cryopreservation process.  
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1. Introduction 
Porous materials are defined as materials consisting of a ‘matrix’ in which the pores are filled with fluid. Their 

characteristic feature is the porosity, which defines the ratio of the volume of the pores to the volume of the entire material. 
Due to the application of porous materials in many fields, the transport phenomena occurring in them are carried out more 
often, for example, analyses of electronic devices or thermal insulation in buildings, as well as porous scaffolds for tissue 
engineering and transport in biological tissues [1], [2]. 

Biological tissues consist of dispersed cells isolated by voids (pores) through which nutrients flow to all cells in them. 
Therefore, they can be considered as porous materials. Transport phenomena that can occur in biological tissues include, for 
example, heat and mass transfer. Heat transfer in biological tissues is related to processes such as heat conduction in tissues 
or heat transfer by perfusion of blood through tissue pores (blood convection). Mass transport in tissues is induced by the 
phenomenon of diffusion. Assuming that tissues are porous materials, mass transfer is mainly explored in the context of drug 
and nutrient transport, e.g. to brain cells, or the transport of elements that are part of biodegradable scaffolds [2]. 

Biological tissue, such as articular cartilage, is often modelled as a homogeneous material [3]–[6]. However, this is a 

simplification, as articular cartilage represents an example of a porous material. Articular cartilage is a thin connective 
fibrocartilage composed of water (approximately 80%), collagens, and proteoglycans. The size of the pores present in the 
tissue is estimated to be in the range of 2 nm to 6 nm [7]–[9]. Therefore, it is reasonable to examine the influence of the 
porous material properties on the diffusion coefficient, which is a crucial parameter for correctly simulating the changes in 
cryoprotectant concentration in a biological sample. 

This article presents a comparison of the diffusion coefficient values calculated for biological tissue treated as 
homogeneous material and as a porous medium. For the homogeneous material, the effective diffusion coefficient is 
determined using the Einstein-Stokes equation. When the material was assumed to be porous, a modified relationship was 

applied, considering the porosity and tortuosity of the biological tissue. In the mathematical model, the diffusion coefficient 
also depends on the temperature distribution in the tissue. The analysis was performed for a selected biological tissue 
(articular cartilage) to simulate changes during its temperature reduction process. 
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2. Methodology 
In this study, a biological tissue sample (articular cartilage) was modelled and a two-dimensional axisymmetric 

domain was analysed [3]–[6]. A simplified scheme of the computational domain (Ω) is depicted in Fig. 1. The variable 
temperature distribution in the tissue is the result of changes in the temperature of the bath solution, which was reduced 

at a cooling rate of 100 °C∙min-1. This is the cooling rate that is used during cryopreservation by  method called 
vitrification [10], [11]. It is assumed that bath solution consists of water and dimethylsulphoxide (DMSO) with the 
concentration equal to cbath = 10 %(w/w). 

In the following subsections, a mathematical and numerical model of the problem is presented. 

 
 

Fig. 1: Domain considered, where R and H are dimensions, Γ1-4 are the boundaries of the domain. 

 
2.1. Mathematical model 

To determine the effective diffusion coefficient Deff in homogeneous materials the Einstein-Stokes equation  
is used [5], [12]: 

 

𝐷𝑒𝑓𝑓(𝑇) =
𝑘𝐵𝑇

6π𝑟𝑠μ𝑑
, (1) 

 
where kB is the Boltzmann constant (kB = 1.38×10-23 J·K-1), T is the temperature (in [K]), rs is the radius of the spherical 
particle and μd is dynamic viscosity of DMSO. 

For porous media, the diffusion coefficient is modified to take into account the porosity and tortuosity of the 
material. The effective diffusion coefficient (Deff) is expressed as [13]–[15]: 

 

𝐷𝑒𝑓𝑓 = 𝐷𝑑𝑤

ε

τ2
, (2) 

 
where Ddw is the diffusion coefficient of DMSO in water, ε is the water content in the sample and τ is the tortuosity factor. 

The diffusion coefficient of DMSO in water can be calculated as follows [13], [15]: 
 

𝐷𝑑𝑤 = 𝐷0 + Γ0.5, (3) 

 

where D0 is the reference diffusion coefficient, Γ is the thermodynamic factor of the form [13], [15]: 
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Γ = 1 + 𝑥𝑑 (
𝜕𝑙𝑛γ𝑑

𝜕𝑥𝑑
), (4) 

 

where xd is the mole fraction of DMSO and γd is the activity coefficient for DMSO, which is calculated using the UNIFAC 
model [16]. 

The reference diffusion coefficient can be expressed [13], [15]: 
 

𝐷0 = (𝐷0,𝑑𝑤)
𝑥𝑤

+ (𝐷0,𝑤𝑑)
𝑥𝑑

, (5) 

 
where D0,dw and D0,dw are the diffusion coefficients at infinite-dilution of DMSO in water and water in DMSO, respectively. 
The diffusion coefficients are estimated by using the formulas proposed in [13], [15]: 

 

𝐷0,𝑑𝑤 = (2.98 × 10−7)μ𝑤 ∙ (0.285𝑉𝑐,𝑑
1,048)

−0.5473
∙ 𝑇, (6) 

𝐷0,𝑑𝑤 = (9.89 × 10−8)μ𝑑 ∙ (0.285𝑉𝑐,𝑑
1,048)

−0.45
∙ (0.285𝑉𝑐,𝑤

1,048)
0.265

∙ 𝑇, (7) 

 

where μw is the dynamic viscosity of water, Vc,d and Vc,w are the critical volume of DMSO and water, respectively. 
The unsteady temperature distribution in the selected biological tissue, on which the diffusion coefficient depends, is 

determined from the Fourier equation [5]: 
 

𝑐𝑝ρ
𝜕𝑇(𝑟, 𝑧, 𝑡)

𝜕𝑡
= ∇(𝑘∇𝑇), (8) 

 
where cp is the specific heat capacity, ρ is the density, k is the thermal conductivity, r and z are the geometric coordinates of 

the cylindrical coordinate system, t is the time and ∇ is the gradient operator. 
The unsteady heat transfer problem is supplemented with the initial condition T(r, z, t = 0) = Tint. and boundary conditions 

[5]: 
 

{
Γ1  and  Γ4 :   − 𝐧𝑘 ∙ ∇𝑇 = α[𝑇(𝑟, 𝑧, 𝑡) − 𝑇𝑏𝑎𝑡ℎ],
Γ2  and  Γ3 :   − 𝐧𝑘 ∙ ∇𝑇 = 0,                                   

 (9) 

 
where α is the natural convection heat transfer coefficient. 

To calculate the mole fraction of DMSO, the mass transfer in the sample also needs to be determined [5]: 
 

𝜕𝑐𝑑(𝑟, 𝑧, 𝑡)

𝜕𝑡
= ∇(𝐷𝑒𝑓𝑓∇𝑐𝑑), (10) 

 

where cd is the concentration of DMSO in the sample. 
The mass transfer model is completed by the initial condition cd (r, z, t = 0) = cint. and boundary conditions [5]: 
 

{
Γ1  and  Γ4 :   − 𝐧𝐷𝑒𝑓𝑓 ∙ ∇𝑐𝑑 = 0.9𝑐𝑏𝑎𝑡ℎ ,

Γ2  and  Γ3 :   − 𝐧𝐷𝑒𝑓𝑓 ∙ ∇𝑐𝑑 = 0.              
 (11) 
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2.2. Numerical model 

The unsteady state heat transfer analysis is performed using the finite difference method (FDM) [5], [17]. A constant 
time grid is implemented: 

 

𝑡0 < 𝑡1 < ⋯ < 𝑡𝑓−1 < 𝑡𝑓 < 𝑡𝑓+1 < ⋯ < 𝑡∞, (12) 

 
where Δt = t f – t f−1 is the time step. 

A geometric grid was also introduced into the computational domain of the sample. The grid cell consists of five 

points – a central node and four nodes in four axial directions from the central node. Moreover, the boundary nodes are 
located half a mesh step away from the boundary of the domain. 

According to the concept of FDM, differential quotients are introduced into the equation. After appropriate 
transformations, the Eq. (3) for the central nodes has the form: 

 

𝑇𝑖,𝑗
𝑓

= 𝑇𝑖,𝑗
𝑓−1

−
∆𝑡

𝑐𝑝ρ
∑

Φ𝑒

𝑅𝑒

(𝑇𝑒
𝑓−1

− 𝑇𝑖,𝑗
𝑓−1

)

4

𝑎=1

, (13) 

 
where i = 2, 3, . . ., n − 1, j = 2, 3, . . ., m – 1, n and m are the number of nodes in z- and r-direction, respectively; the individual 

a corresponds to e = {(i, j + 1); (i, j − 1); (i + 1, j); (i − 1, j)}. The shape function Φe and the thermal resistance Re are defined 
as: 

 

Φ𝑖,𝑗−1 =
𝑟𝑖,𝑗 − 0.5ℎ1

𝑟𝑖,𝑗ℎ1

,    Φ𝑖,𝑗+1 =
𝑟𝑖,𝑗 + 0.5ℎ1

𝑟𝑖,𝑗ℎ1

,    Φ𝑖−1,𝑗 = Φ𝑖+1,𝑗 =
1

ℎ2

, (14) 

𝑅𝑖,𝑗−1 = 𝑅𝑖,𝑗+1 =
ℎ1

𝑘
,    𝑅𝑖−1,𝑗 = 𝑅𝑖+1,𝑗 =

ℎ2

𝑘
, (15) 

 
where ri,j is the radial coordinate of the node (i, j); and h1 and h2 are the mesh steps in the r- and z-direction, respectively. 

Similarly, for central nodes, Eq. (11) is of the form: 
 

(𝑐𝑑)
𝑖,𝑗
𝑓

= (𝑐𝑑)
𝑖,𝑗
𝑓−1

− ∆𝑡 ∑
Φ𝑒

𝑊𝑒

((𝑐𝑑)𝑒
𝑓−1

− (𝑐𝑑)
𝑖,𝑗
𝑓−1

)

4

𝑎=1

, (16) 

 
where We is the mass resistance given by: 
 

𝑊𝑖,𝑗−1 = 𝑊𝑖,𝑗+1 =
ℎ1

𝐷𝑒𝑓𝑓
,    𝑊𝑖−1,𝑗 = 𝑊𝑖+1,𝑗 =

ℎ2

𝐷𝑒𝑓𝑓
. (17) 

 

A detailed derivation of the Eq. (3) and for boundary nodes can be found, for example, in the thesis [5]. Eq. (6) 
needs to be completed with a stability condition: 

 

∆𝑡 ≤ ∑
Φ𝑒

𝑅𝑒

4

𝑎=1

    𝑎𝑛𝑑    ∆𝑡 ≤ ∑
Φ𝑒

𝑊𝑒

4

𝑎=1

. (18) 
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3. Results and discussion 
The study analysed a homogeneous and porous material with the following properties. The thermophysical 

properties are equal to cp = 3567.5 J·kg−1·K−1, ρ = 1100 kg·m−3 and k = 0.518 W·m−1·K−1 [18], [19], while the porous 
properties are ε = 0.78 and τ = 1.4 [13]. The parameters used to calculate the diffusion coefficient were: rs = 2.541×10−10 

m, μd = 1.996×10−3 Pa·s, μd = 0.8905×10−3 Pa·s, Vc,d = 228 mL∙mol-1, Vc,w = 56 mL∙mol-1 [13], [20], [21]. The initial 
values of temperature and concentration are equal to Tinit. = 22 °C, cinit. = 0 %(w/w), while the natural convection heat transfer 

coefficient is α = 525 W·m−2·K−1 [13]. The dimensions of the sample are R = 3 mm and H = 1 mm (cf. Fig. 1). The time and 
mesh steps are equal to: ∆t = 0.005 s, h1 = 0.1 mm and h2 = 0.05 mm. The simulation stops after 100 s. 

The computation were performed in an author's program prepared in MATLAB 2021a software, while UNIFAC model 
calculations were carried out using UNIFAC group contribution method activity calculator function (Saeed (2025); 
https://www.mathworks.com/matlabcentral/fileexchange/64885-unifac-group-contribution-method-activity-calculator-
function, MATLAB Central File Exchange. Retrieved January 15, 2025).  

Fig. 2 presents a graph of the temperature change over time as a result of alterations in the temperature of the bath 
solution, where the dashed line represents the change in Tbath in time. The results obtained are given for a point with 

coordinates (5×10−5, 2.5×10−5) m. Figure 3 illustrates the function of the effective diffusion coefficient in time assuming 
(a) the material is homogeneous and (b) the material is porous. One can see, a decrease in temperature also effects in a 

decrease in the diffusion coefficient value over time. It is also observed that the values of the diffusion coefficient for vary 
according to the model introduced. Higher values of this coefficient are observed for the porous material model. 

The obtained effective diffusion coefficient values are worth comparing with data presented in the literature [13], [15]. 
For example, Yu et al. [13], [15] use a similar model for a porous material in their studies, except that it considers the 
dependence of the dynamic viscosity on the temperature. The values of the effective diffusion coefficient received by them 
for the porous material are lower than in this article. 

 

 
Fig. 2: Temperature as a function of time. 

 

 



 

 

 

 

 

 

 

153-6 

  
(a) (b) 

 
Fig. 3: Effective diffusion coefficient as a function of time for: (a) homogeneous material and (b) porous media. 

 

4. Conclusion 
The article presents a research on the diffusion coefficient for a selected biological tissue (an articular cartilage), 

which has been modelled as a homogeneous material and a porous material. The effective diffusion coefficient depends 

on the temperature distribution in the computational domain and, in the case of a porous medium model, also on the 
molar fraction changing due to the mass transfer phenomenon. The value of the effective diffusion coefficient decreases 
with a lowering of the temperature and is higher for a porous media than for a homogeneous material. 

In conclusion, it can be deduced that the choice of an appropriate material model has a significant impact on the 
value of the effective diffusion coefficient. In further studies, it is planned to use an effective diffusion coefficient 
considering porosity to simulate the cryopreservation by slow freezing, vitrification or liquidus-tracking protocol. In this 
way, the model presented in this paper will be practically applicable to the analysis of real processes. On the other hand, 

it would be worth extending the model given by including the impact of temperature on dynamic viscosity (compare 
with [13], [15]). 

 

Acknowledgements 
Publication is funded by the Excellence Initiative – Research University programme realized at the Silesian 

University of Technology, in 2024-2026 (grant no. 10/040/SDU/10-22-03). 

 

References 
[1] K. Khanafer and K. Vafai, ‘A critical review on the applications of fluid-structure interaction in porous media’, 

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30, no. 1, pp. 308–327, 2020, doi: 
10.1108/HFF-07-2019-0592. 

[2] A.-R. A. Khaled and K. Vafai, ‘The role of porous media in modeling flow and heat transfer in biological tissues’, 

International Journal of Heat and Mass Transfer, vol. 46, no. 26, pp. 4989–5003, 2003, doi: 10.1016/S0017-
9310(03)00301-6. 

[3] A. Skorupa and A. Piasecka-Belkhayat, ‘Numerical Modeling of Heat and Mass Transfer during Cryopreservation Using 
Interval Analysis’, Applied Sciences, vol. 11, no. 1, p. 302, 2020, doi: 10.3390/app11010302. 



 

 

 

 

 

 

 

153-7 

[4] A. Piasecka-Belkhayat and A. Skorupa, ‘Numerical Study of Heat and Mass Transfer during Cryopreservation Process 
with Application of Directed Interval Arithmetic’, Materials, vol. 14, no. 11, p. 2966, 2021, doi: 10.3390/ma14112966. 

[5] A. Skorupa, ‘Multi-scale modelling of heat and mass transfer in tissues and cells during cryopreservation including 
interval methods’, Doctoral thesis, Politechnika Śląska, Gliwice, Poland, 2023.  

[6] A. Piasecka-Belkhayat, A. Skorupa, and M. Paruch, ‘Determining Thermophysical Parameters of Cryopreserved 

Articular Cartilage Using Evolutionary Algorithms and Experimental Data’, Materials, vol. 17, no. 23, 2024, doi: 
10.3390/ma17235703. 

[7] R. Behrou, H. Foroughi, and F. Haghpanah, ‘Numerical study of temperature effects on the poro-viscoelastic behavior 
of articular cartilage’, Journal of the Mechanical Behavior of Biomedical Materials, vol. 78, pp. 214–223, 2018, doi: 
10.1016/j.jmbbm.2017.11.023. 

[8] J. Ozwoniarek, H. Wiśniewska-Weinert, J. Lisowski, and Ł. Kędzia, ‘Nowe rozwiązania w zakresie biotribologii i 
biomateriałów. Cz. 2 Stanowisko do badań zużyciowych elementów endoprotez stawu biodrowego’, Obróbka 
Plastyczna Metali, vol. 18, no. 1, pp. 35–40, 2007 (in Polish). 

[9] D. Majda, A. Bhattarai, J. Riikonen, B.D. Napruszewska, M. Zimowska, A. Michalik-Zym, J. Tӧyrӓs, V.-P. Lehto, ‘New 
approach for determining cartilage pore size distribution: NaCl-thermoporometry’, Microporous and Mesoporous 
Materials, vol. 241, pp. 238–245, 2017, doi: 10.1016/j.micromeso.2017.01.005. 

[10] F. Xu, S. Moon, X. Zhang, L. Shao, Y. S. Song, and U. Demirci, ‘Multi-scale heat and mass transfer modelling of cell 
and tissue cryopreservation’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, vol. 368, no. 1912, pp. 561–583, 2010, doi: 10.1098/rsta.2009.0248. 

[11] A. Skorupa and A. Piasecka-Belkhayat, ‘Comparison of heat transfer phenomena for two different cryopreservation 

methods: slow freezing and vitrification’, Journal of Applied Mathematics and Computational Mechanics, vol. 22, no. 
1, pp. 53–65,. 2023, doi: 10.17512/jamcm.2023.1.05. 

[12] W. Liu, G. Zhao, Z. Shu, T. Wang, K. Zhu, and D. Gao, ‘High-precision approach based on microfluidic perfusion 
chamber for quantitative analysis of biophysical properties of cell membrane’, International Journal of Heat and Mass 
Transfer, vol. 86, pp. 869–879, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.03.038. 

[13] X. Yu, S. Zhang, and G. Chen, ‘Modeling the addition/removal of dimethyl sulfoxide into/from articular cartilage treated 
with the liquidus-tracking method’, International Journal of Heat and Mass Transfer, vol. 141, pp. 719–730, 2019, doi: 

10.1016/j.ijheatmasstransfer.2019.07.032. 
[14] B. R. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Drugie. United States of America: John Wiley & 

Sons, Inc, 2002. 
[15] X. Yu, G. Chen, and S. Zhang, ‘A Model to Predict the Permeation Kinetics of Dimethyl Sulfoxide in Articular 

Cartilage’, Biopreservation and Biobanking, vol. 11, no. 1, pp. 51–56, 2013, doi: 10.1089/bio.2012.0050. 
[16] A. Fredenslund, R. L. Jones, and J. M. Prausnitz, ‘Group-contribution estimation of activity coefficients in nonideal 

liquid mixtures’, AIChE Journal, vol. 21, no. 6, pp. 1086–1099, 1975, doi: 10.1002/aic.690210607. 
[17] E. Majchrzak and B. Mochnacki, Metody numeryczne: podstawy teoretyczne, aspekty praktyczne i algorytmy, Wyd. 4 

rozsz. i uzup.. Gliwice: Wyd. Politechniki Śląskiej, 2005 (in Polish). 
[18] J.-I. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B.J.F. Wong, J. W. Valvano, T. E. Milner, ‘Optical and thermal 

properties of nasal septal cartilage’, Lasers in Surgery and Medicine, vol. 27, no. 2, pp. 119–128, 2000, doi: 
10.1002/1096-9101(2000)27:2<119::AID-LSM3>3.0.CO;2-V. 

[19] Accessed: Jul. 10, 2024. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/ 
[20] Accessed: Jul. 10, 2024. [Online]. Available: https://www.trimen.pl/witek/ciecze/old_index.html (in Polish) 
[21] B. M. Schulze, D. L. Watkins, J. Zhang, I. Ghiviriga, and R. K. Castellano, ‘Estimating the shape and size of 

supramolecular assemblies by variable temperature diffusion ordered spectroscopy’, Org. Biomol. Chem., vol. 12, no. 
40, pp. 7932–7936, 2014, doi: 10.1039/C4OB01373E. 

 


	Determining the Diffusion Coefficient for Articular Cartilage Modelled  As Homogeneous and Porous Material

