
Proceedings of the 12th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 2025)
July 15, 2025 - July 17, 2025 | Imperial College London Conference, London, United Kingdom
Paper No. 170
DOI: 10.11159/ffhmt25.170

XXX-1

Application of Singular Value Decomposition and Autoencoder for
Supersonic Flow over Backward Facing Step

Shivam Sanjay Singh1, Rudra N. Roy1
1School of Mechanical Sciences, Indian Institute of Technology, Goa

Farmagudi, Ponda-403401, Goa, India

singh.sanjay.21063@iitgoa.ac.in; rudra@iitgoa.ac.in

Abstract - This paper explores the integration of PythonFOAM with the hybrid pressure-based solver rhoPimpleCentralFoam to

simulate supersonic flow over a backward facing step, aiming to validate the coupling of these solvers. Flow field simulation was

performed using Reynolds averaged Navier Stokes (RANS)-based turbulence model with the hybrid solver. Streaming singular value

decomposition (SVD) was applied to identify coherent flow structures, capturing essential features such as boundary layer separation

and shock wave formation. The SVD modes were then utilized to reconstruct the velocity field, with the mean flow field obtained showed

a close match to the original computational fluid dynamics (CFD) results, highlighting the effectiveness of this approach. Furthermore,

a deep neural network autoencoder was applied to compress the flow field data, further demonstrating the integration of PythonFOAM

with the solver. The autoencoder learns a compact representation of the velocity field, and the reconstructed field from this compressed

representation aligns closely with the CFD results, confirming the model’s ability to approximate complex flow dynamics. The results

obtained demonstrated the successful coupling of the solvers and underscored the potential of reduced-order modelling techniques for

solving complex flow problems.

Keywords: Supersonic flow, Singular value decomposition, Autoencoder, OpenFOAM

1. Introduction
Designing high-speed airbreathing engines involves understanding several complex phenomena of supersonic

combustion, such as turbulent mixing, shock interaction and heat release rate. The supersonic flow past a backwards-facing

step (BFS) is a classical problem that mimics several behaviours that appear in the supersonic air-breathing engine. A

thorough understanding of the complex flow physics encountered in supersonic BFS can benefit many design and
development processes in these fields.

With the advancement of computational capabilities, large scale simulations have made significant strides in enhancing

our understanding of the complex physics of supersonic flows [1-3]. Recently, reduced-order modelling techniques have

gained attention because of their ability to capture essential physics and dynamics of high-fidelity models at a fraction of the
computational cost. These reduced-order models often involve data-driven approaches such as proper orthogonal

decomposition (POD) [4], dynamic mode decomposition (DMD) [5], etc. In fluid dynamics, the POD method has been

extensively used to identify coherent structures and perform reduced-order modelling. POD is based on singular value
decomposition (SVD) and represents the original system in a reduced form by truncating the modes. Further, Galerkin

projection can be applied to the governing equations in a high-fidelity model to obtain a reduced system of equations.

Moreover, the use of non-intrusive reduced order modelling, such as neural networks like autoencoder for dimensionality
reduction, has been demonstrated in several studies [6, 7].

When performing forming reduced-order modelling, users often face challenges exporting the data pertaining to large

eddy simulation (LES)/Reynold’s averaged Navier Stokes (RANS). In this context, in-situ methods offer advantages over

traditional data processing techniques. Recently, Malik et al. [8] developed a framework to interface OpenFOAM and Python
for performing in-situ data analysis. OpenFOAM is a well-established open-source finite volume solver for computational

fluid dynamics (CFD) applications. It offers built-in structured and unstructured meshing facilities and MPI-based utilities

for solving problems in an efficient manner. OpenFOAM has been used to study a wide range of problems in the areas of
multi-phase heat transfer [9], rarefied gas dynamics [10], supersonic flows [11], combustion [12, 13], etc. The development

work by Malik et al. [8] demonstrated the integration of data-science capabilities using Python/C++ API with OpenFOAM.

XXX-2

The interfacing of OpenFOAM with Python not only leverages the in-situ data analysis but also opens the avenues for the

application of machine learning (ML) in CFD applications using OpenFOAM and would be useful for the implementation
of several reduced-order modelling techniques.

The present work aims to integrate the PythonFOAM framework developed by Malik et al. [8] with the hydrid

pressure-based solver, i.e., rhoPimpleCentralFoam-solver [14], applicable for supersonic flows. The
rhoPimpleCentralFoam-solver has been extensively validated previously by Janhavi and Roy [11] for supersonic flow over

backward facing step. The interfaced solver, named Python-rhoPimpleCentralFoam will initially be used to perform SVD

on supersonic flow over backward facing step. Further, a deep neural network autoencoder will be used for compressing the

flow-field information mainly to demonstrate the potential use of machine learning in Python-rhoPimpleCentralFoam solver.

2. Numerical Details
In this section, details about the governing equations, singular value decomposition and autoencoder are provided.

2.1 Governing equations

The governing equations for continuity, momentum, and energy transport are given as [15],

Continuity equation 0i

i

u

t x

 (1)

Momentum equation
()

0i
i j ij i j ij

j

u
u u p u u

t x

 (2)

Energy equation
()

0j j j i j i ij

j

E
u E u p u p u E q u

t x

 (3)

In Eqs. (1-3) and tilde refers to density-weighted averaging and overbar indicates averaging through Reynolds

decomposition, t is the time, x is the special coordinate, is the density, u is the velocity vector, p is the pressure, ij is

the Kronecker delta, q is the heat flux, ij is the shear stress and E is total energy. In the present study, k-ɛ [16] based RANS

turbulence model was used to obtain closure for the term
i ju u appearing in the momentum equation.

2.2 Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization technique that decomposes a real M × N matrix as
TA U V (4)

where
M NA ,

M NU , N N , and
N NV , represents the real space, M and N are a number of snapshots

of data collected for the analysis, and the number of degrees of freedom in each snapshot, respectively. In Eq. (4), U are the

left singular vectors, are the diagonal entries or Eigen values and V are the right singular vectors. The superscript
T

represents matrix transpose. The computation requirement in terms of scales and memory for the SVD is O(M N2) and O(M
N), respectively. For typical computational fluid dynamics (CFD) applications, the analysis using classical SVD would be

challenging as the degree of freedom may grow very large. To circumvent this difficulty Levy and Lindenbaum [17] proposed

a streaming variant of SVD. The streaming SVD is been performed by extracting the first K left singular vectors, which
correspond to the K largest coherent structures which results in the reduction of the operational cost and memory footprint

of SVD to O(M N K) and O(M K), respectively. Here the left singular eigenvectors is updated in a batch-like manner. The

algorithm proposed and developed by Levy and Lindenbaum [17] has been used in the present work to perform streaming

SVD.
 2.3 Autoencoder

An autoencoder belongs to the class of deep neural networks, widely used for performing various reduced-order

modelling for flow physics. Figure 1 shows the schematic of the representation of the autoencoder architecture. It consists

of two main parts: an encoder, which compresses the input data into a lower-dimensional latent space using a number of

XXX-3

hidden layers, and a decoder, which reconstructs the original data from the latent space using the appropriate number of

hidden layers. The network is trained to reduce the reconstruction error through a loss function. The latent space captures the

most salient features of the data compressed into some latent variables containing arbitrary data, enabling dimensionality

reduction and noise filtering. In this study, an autoencoder was utilized to analyse snapshots of supersonic flow over a

backward facing step. The latent space dimensionality was set to 4, aiming to extract dominant flow features analogous to

proper orthogonal decomposition (POD) modes. The network architecture is designed with the encoder progressively

reducing dimensionality through dense layers with decreasing neuron counts (50, 25, 10, and 4), while the decoder mirrors

this structure, reconstructing the flow field from the latent space. In each layer, a Swish activation function was employed,

and an ADAM optimizer was used with a learning rate of 0.001.

Fig. 1. Schematic of autoencoder architecture

3. Workflow and Computational Details
The overall workflow of the Python and rhoPimpleCentralFoam-solver is summerized here. The hybrid pressure-

based solver, i.e., rhoPimpleCentralFoam used in this study combines PIMPLE algorithm with the KT scheme [14]. This

algorithm relates the change in the pressure field with a change in the velocity and density fields using discretized pressure

equation [14, 18]. A Python/C-API has been utilized to embed Python in OpenFOAM. The rhoPimpleCentralFoam-solver
was modified to include a Python interpreter that remained live throughout the simulation. Once the framework for

interfacing OpenFOAM and Python was set, the python_module.py file was created in the working directory. The

python_module.py file comprises Python module functions such as SVD and autoencoder. Figure 2 shows the flow chart of

the coupled Python and rhoPimpleCentralFoam solver. At the initial stage, the hybrid solver and Python/C-API coupling
were initialized. Further, the Pimple algorithm was executed, and at each time step, data obtained from the

rhoPimpleCentralFoam-solver were fed to the NumPy array. Further, the data were retrieved from the NumPy array for

performing SVD/autoencoder calculations. Finally, the processed data were fed back to the flow solver for writing the data
in OpenFOAM I/O format.

The validated 2D computational setup of backward facing setup by Janhavi and Roy [11] was used to perform SVD

and autoencoder calculations in this study. The free stream velocity is 520 m/s, Reynolds number is 1.024×105 and Mach
number is 2. The static temperature and pressure are 167 K and 35 kPa, respectively [19]. The computational geometry

comprises top and bottom walls where no slip and zero pressure gradient boundary conditions were applied [11]. Uniform

velocity boundary conditions were used at the inlet, whereas zero gradient boundary conditions were provided at the outlet

boundary. The turbulence fields were modelled using SST k-ω models in conjunction with rhoPimpleCentralFoam-solver

Encoder Block Decoder Block

Latent Space Representation

…

…

… …

…

…

Neurons: 50

25

10 10

25

50

4

In
p

u
t

fl
o

w
 f

ie
ld

 r
ep

re
se

n
ta

ti
o
n

R
eco

n
stru

cted
 flo

w

XXX-4

in OpenFOAM. The number of grids selected was 180 and 150 in the axial direction and radial direction, respectively based

on the grid independence study [11]. The results obtained are discussed in the subsequent section.

Fig. 2. Flow chart of the coupled Python and rhoPimpleCentralFoam solver

3. Results and Discussion
The results obtained from SVD and autoencoder for the supersonic flow over a backward facing step using the coupled

solver are highlighted in this section.
Figures 3 and 4 illustrate the four singular vectors corresponding to four different flow modes for the u-component

and v-component velocity, respectively which were obtained using the streaming SVD at the final time step. The first singular

vector in Fig. 3 represents Mode 1 of the u-component, which accounts for 96.887% of the total energy. This dominant mode
primarily captures the mean flow behaviour, reflecting the overall characteristics of the flow field. Specifically, it highlights

key flow features, such as boundary layer separation, shock wave formation, and the general flow patterns in the system.

Additionally, Mode 1 effectively represents the formation of the expansion and reattachment waves, as well as their

interaction with the step and the downstream regions of the flow. The first singular vector of the v-component, i.e. mode 1
shown in Fig. 4 captures 83.736 % of energy and reveals a well-defined expansion region downstream of the step. Mode 2

of u-component and v-component velocity captures 1.749 % and 9.135 % of energy, respectively. Here singular vectors show

high values near the step edge, indicating that these modes are related to localized flow features near the step. The structure
obtained in mode 3 for the u-component is quite similar to the mode 3 for the v-component. Additionally, mode 4 exhibits

similar structures as observed in modes 1 and 2 for both the velocity components. However, the energy associated with

modes 3 and 4 is significantly lower compared to mode 1. Figure 5 provides a comparison between the velocity field obtained
from the hybrid solver and the velocity field reconstructed from the SVD using the four modes. The reconstructed velocity

field, while derived from only four modes, provides a remarkably accurate representation of the major flow features. This

includes important flow phenomena such as the recirculation zone, shock wave, and expansion fan. The reconstructed

velocity field shows a high level of agreement with the results obtained from the CFD simulations, demonstrating the
effectiveness of using these modes to capture the essential features of the flow field, even when fewer modes are used.

Further, a deep neural network autoencoder was used to compress the flow-field information mainly to demonstrate

the coupling of Python-rhoPimpleCentralFoam-solver. In this study with a batch size of 128 snapshot of u-component were
collected and were used to train the deep neural network. Further the trained network weights were used to reconstruct the

u-component velocity at the end of 1000 iterations. Figure 6 presents a comparison between the u-component velocity field

obtained from the hybrid solver and reconstructed u-component velocity produced by the autoencoder. It may be observed
that the reconstructed velocity field closely resembles the actual solution obtained from the CFD simulation. This indicates

Start

Initialize hybrid solver + Python-C/API coupling

Stop

Send the data to Numpy Array for SVD/autoencoder

Execute Pimple Algorithm

Data fed back for writing in OpenFOAM I/O format

T
im

e
lo

o
p

XXX-5

that the autoencoder, by learning the nonlinear relationships between the low-dimensional embeddings and the original high-

dimensional velocity field, can effectively approximate the flow field.

Fig. 3. Four singular vectors for u-component at the final time step

Fig. 4. Four singular vectors for v-component at the final time step

 (a) (b)

Fig. 5. Velocity magnitude obtained from (a) hybrid solver and (b) reconstructed-SVD

XXX-6

 (a) (b)

Fig. 6. u-component velocity obtained from (a) hybrid solver and (b) reconstructed-autoencoder

4. Conclusion

This article discusses the integration of PythonFOAM with the hybrid pressure-based solver, i.e.,

rhoPimpleCentralFoam, focusing on its application to the supersonic flow over a backward facing step case. The primary

aim of this study was to validate the coupling of these two solvers through the use of streaming SVD and a deep neural
network autoencoder. The flow field calculations were initially performed using RANS-based turbulence model with the

hybrid pressure-based solver. To begin with, streaming SVD was applied to extract the coherent structures present in the

flow field. The four modes derived from the SVD analysis revealed crucial flow features such as boundary layer separation,
shock wave formation, and the overall flow patterns within the system. By utilizing these derived modes, the velocity field

was then reconstructed, and the mean flow field obtained closely resembled the original solution, demonstrating the

effectiveness of this technique in capturing the essential characteristics of the flow. Additionally, a deep neural network

autoencoder was employed to compress the flow-field information. This step was mainly intended to demonstrate the
successful coupling of PythonFOAM with the rhoPimpleCentralFoam-solver. The autoencoder learned a low-dimensional

representation of the velocity field, and upon decoding, the reconstructed velocity field was found to closely match the actual

solution obtained from the CFD simulation, further validating the approach. This study highlights the successful coupling of
these two solvers and establishes a solid foundation for the development of reduced-order modelling techniques. These

techniques have significant potential in addressing and solving complex flow problems by reducing the computational cost

and enhancing the efficiency of simulations.

References
[1] W. Hu, S. Hickel and B. V. Oudheusden, “Dynamics of a supersonic transitional flow over a backward-facing step,”

Phys. Rev. Fluids, vol. 4, pp. 103904, 2019.

[2] W. Li and H. Liu, “Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing
step,” Aerosp. Sci. Techno., vol. 84, pp. 1011-1019, 2019.

[3] R. K. Soni, N. Arya and A. De, “Characterization of turbulent supersonic flow over a backward-facing step,” AIAA J.,

vol. 55, pp. 1511-1529, 2017.
[4] A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Curr. Sci., vol. 78, pp. 808-817, 2000.
[5] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., vol. 656, pp. 5-28,

2010.

[6] S. Wiewel, M. Becher, N. Thuerey, “Latent space physics: towards learning the temporal evolution of fluid flow,”
Comput. Graph Forum vol. 38, pp. 71-82, 2019.

[7] K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on nonlinear manifolds using deep convolutional

autoencoders,” J. Comput. Phys., vol. 404, pp. 108973, 2020.

[8] R. Maulik, D. K. Fytanidis, B. Lusch, V. Vishwanath and S. Patel, “PythonFOAM: In-situ data analyses with OpenFOAM

and Python,” J. Comput. Sci., vol. 62, pp. 101750, 2022.

XXX-7

[9] C. Kunkelmann and P. Stephan, “CFD simulation of boiling flows using the volume-of-fluid method within

OpenFOAM,” Numer. Heat Transf. A., vol. 56, pp. 631–646, 2009.

[10] C. White, M. K. Borg, T. J. Scanlon, S. M. Longshaw, B. John, D. R. Emerson and J. M. Reese, “dsmcFoam+: An

OpenFOAM based direct simulation Monte Carlo solver,” Comput. Phys. Commun., vol. 224, pp. 22-43, 2018.

[11] J. Gharate and R. N. Roy, “Modelling of supersonic and subsonic flows using hybrid pressure based solver in

Openfoam,” Proceedings of the 8th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT’21), 2021,

Paper No. 107.

[12] P. P. Singh and R. N. Roy, “Evaluation of flow and flame characteristics of turbulent bluff-body CH4-H2 flame using

LES-FPV approach,” J. Turbul., vol. 25, pp. 2352490, 2024.

[13] P. P. Singh and R. N. Roy, “Nonpremixed and premixed FPV modeling of a turbulent CH4-H2 bluff-body flame,”
Combust. Sci. Technol., pp. 1-27, 2024.

[14] M. Kraposhin, M. Banholzer, M. Pfitzner and I. K. Marchevsky, “A hybrid pressure-based solver for nonideal single-

phase fluid flows at all speeds,” Int. J. Num. Methods Fluids, vol. 88, pp. 79–99, 2018.
[15] H. K. Versteeg and W. Malalasekera, Introduction to computational fluid dynamics. Pearson Education Limited: 2nd

Ed., 2007.

[16] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comp. Methods Appl. Mecha. Eng.,
vol. 3, pp. 269–289, 1974.

[17] A. Levy and M. Lindenbaum, “Sequential Karhunen-Loeve basis extraction and its application to images,” Proceedings

1998 International Conference on Image Processing (ICIP98), 1998, vol. 2, pp. 456460.

[18] M. Kraposhin, A. Bovtrikova and S. Strijhak, “Adaptation of Kurganov-Tadmor numerical scheme for applying in
combination with the PISO method in numerical simulation of flows in a wide range of Mach numbers,” Procedia Comp.

Sci., vol. 66, pp. 43-52, 2015.

[19] J. C. McDaniel, D. G. Fletcher and R. J. Hartfield, “Staged transverse injection into Mach 2 flow behind a rearward-
facingstep: a 3D compressible flow test case for hypersonic combustor CFD validation,” AIAA Paper, 1992.

	Application of Singular Value Decomposition and Autoencoder for Supersonic Flow over Backward Facing Step

