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Abstract - This paper explores the integration of PythonFOAM with the hybrid pressure-based solver rhoPimpleCentralFoam to 

simulate supersonic flow over a backward facing step, aiming to validate the coupling of these solvers. Flow field simulation was 

performed using Reynolds averaged Navier Stokes (RANS)-based turbulence model with the hybrid solver. Streaming singular value 

decomposition (SVD) was applied to identify coherent flow structures, capturing essential features such as boundary layer separation 

and shock wave formation. The SVD modes were then utilized to reconstruct the velocity field, with the mean flow field obtained showed 

a close match to the original computational fluid dynamics (CFD) results, highlighting the effectiveness of this approach. Furthermore, 

a deep neural network autoencoder was applied to compress the flow field data, further demonstrating the integration of PythonFOAM 

with the solver. The autoencoder learns a compact representation of the velocity field, and the reconstructed field from this compressed 

representation aligns closely with the CFD results, confirming the model’s ability to approximate complex flow dynamics. The results 

obtained demonstrated the successful coupling of the solvers and underscored the potential of reduced-order modelling techniques for 

solving complex flow problems.  
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1. Introduction 
Designing high-speed airbreathing engines involves understanding several complex phenomena of supersonic 

combustion, such as turbulent mixing, shock interaction and heat release rate. The supersonic flow past a backwards-facing 

step (BFS) is a classical problem that mimics several behaviours that appear in the supersonic air-breathing engine. A 

thorough understanding of the complex flow physics encountered in supersonic BFS can benefit many design and 
development processes in these fields.   

With the advancement of computational capabilities, large scale simulations have made significant strides in enhancing 

our understanding of the complex physics of supersonic flows [1-3]. Recently, reduced-order modelling techniques have 

gained attention because of their ability to capture essential physics and dynamics of high-fidelity models at a fraction of the 
computational cost. These reduced-order models often involve data-driven approaches such as proper orthogonal 

decomposition (POD) [4], dynamic mode decomposition (DMD) [5], etc. In fluid dynamics, the POD method has been 

extensively used to identify coherent structures and perform reduced-order modelling. POD is based on singular value 
decomposition (SVD) and represents the original system in a reduced form by truncating the modes. Further, Galerkin 

projection can be applied to the governing equations in a high-fidelity model to obtain a reduced system of equations. 

Moreover, the use of non-intrusive reduced order modelling, such as neural networks like autoencoder for dimensionality 
reduction, has been demonstrated in several studies [6, 7]. 

When performing forming reduced-order modelling, users often face challenges exporting the data pertaining to large 

eddy simulation (LES)/Reynold’s averaged Navier Stokes (RANS). In this context, in-situ methods offer advantages over 

traditional data processing techniques. Recently, Malik et al. [8] developed a framework to interface OpenFOAM and Python 
for performing in-situ data analysis. OpenFOAM is a well-established open-source finite volume solver for computational 

fluid dynamics (CFD) applications. It offers built-in structured and unstructured meshing facilities and MPI-based utilities 

for solving problems in an efficient manner. OpenFOAM has been used to study a wide range of problems in the areas of 
multi-phase heat transfer [9], rarefied gas dynamics [10], supersonic flows [11], combustion [12, 13], etc. The development 

work by Malik et al. [8] demonstrated the integration of data-science capabilities using Python/C++ API with OpenFOAM. 
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The interfacing of OpenFOAM with Python not only leverages the in-situ data analysis but also opens the avenues for the 

application of machine learning (ML) in CFD applications using OpenFOAM and would be useful for the implementation 
of several reduced-order modelling techniques. 

The present work aims to integrate the PythonFOAM framework developed by Malik et al. [8] with the hydrid 

pressure-based solver, i.e., rhoPimpleCentralFoam-solver [14], applicable for supersonic flows. The 
rhoPimpleCentralFoam-solver has been extensively validated previously by Janhavi and Roy [11] for supersonic flow over 

backward facing step. The interfaced solver, named Python-rhoPimpleCentralFoam will initially be used to perform SVD 

on supersonic flow over backward facing step. Further, a deep neural network autoencoder will be used for compressing the 

flow-field information mainly to demonstrate the potential use of machine learning in Python-rhoPimpleCentralFoam solver.  
 

2. Numerical Details 
In this section, details about the governing equations, singular value decomposition and autoencoder are provided.  

2.1 Governing equations 

The governing equations for continuity, momentum, and energy transport are given as [15], 
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In Eqs. (1-3) and tilde refers to density-weighted averaging and overbar indicates averaging through Reynolds 

decomposition, t  is the time, x is the special coordinate,   is the density, u  is the velocity vector, p  is the pressure, ij is 

the Kronecker delta, q  is the heat flux, ij  is the shear stress and E is total energy. In the present study, k-ɛ [16] based RANS 

turbulence model was used to obtain closure for the term 
i ju u   appearing in the momentum equation.  

2.2 Singular Value Decomposition 

The singular value decomposition (SVD) is a matrix factorization technique that decomposes a real M × N matrix as 
TA U V                                    (4) 

where 
M NA  , 

M NU  , N N , and 
N NV  , represents the real space, M and N are a number of snapshots 

of data collected for the analysis, and the number of degrees of freedom in each snapshot, respectively. In Eq. (4),  U are the 

left singular vectors,  are the diagonal entries or Eigen values and V are the right singular vectors. The superscript 
T

represents matrix transpose. The computation requirement in terms of scales and memory for the SVD is O(M N2) and O(M 
N), respectively. For typical computational fluid dynamics (CFD) applications, the analysis using classical SVD would be 

challenging as the degree of freedom may grow very large. To circumvent this difficulty Levy and Lindenbaum [17] proposed 

a streaming variant of SVD. The streaming SVD  is been performed by extracting the first K left singular vectors, which 
correspond to the K largest coherent structures which results in the reduction of the operational cost and memory footprint 

of SVD to O(M N K) and O(M K), respectively. Here the left singular eigenvectors is updated in a batch-like manner. The 

algorithm proposed and developed by Levy and Lindenbaum [17] has been used in the present work to perform streaming 

SVD.  
 2.3 Autoencoder 

An autoencoder belongs to the class of deep neural networks, widely used for performing various reduced-order 

modelling for flow physics. Figure 1 shows the schematic of the representation of the autoencoder architecture. It consists 

of two main parts: an encoder, which compresses the input data into a lower-dimensional latent space using a number of 
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hidden layers, and a decoder, which reconstructs the original data from the latent space using the appropriate number of 

hidden layers. The network is trained to reduce the reconstruction error through a loss function. The latent space captures the 

most salient features of the data compressed into some latent variables containing arbitrary data, enabling dimensionality 

reduction and noise filtering. In this study, an autoencoder was utilized to analyse snapshots of supersonic flow over a 

backward facing step. The latent space dimensionality was set to 4, aiming to extract dominant flow features analogous to 

proper orthogonal decomposition (POD) modes. The network architecture is designed with the encoder progressively 

reducing dimensionality through dense layers with decreasing neuron counts (50, 25, 10, and 4), while the decoder mirrors 

this structure, reconstructing the flow field from the latent space.  In each layer, a Swish activation function was employed, 

and an ADAM optimizer was used with a learning rate of 0.001.  

 

 
Fig. 1. Schematic of autoencoder architecture 

 

 

3. Workflow and Computational Details 
The overall workflow of the Python and rhoPimpleCentralFoam-solver is summerized here. The hybrid pressure-

based solver, i.e., rhoPimpleCentralFoam used in this study combines PIMPLE algorithm with the KT scheme [14]. This 

algorithm relates the change in the pressure field with a change in the velocity and density fields using discretized pressure 

equation [14, 18]. A Python/C-API has been utilized to embed Python in OpenFOAM. The rhoPimpleCentralFoam-solver 
was modified to include a Python interpreter that remained live throughout the simulation. Once the framework for 

interfacing OpenFOAM and Python was set, the python_module.py file was created in the working directory. The 

python_module.py file comprises Python module functions such as SVD and autoencoder. Figure 2 shows the flow chart of 

the coupled Python and rhoPimpleCentralFoam solver. At the initial stage, the hybrid solver and Python/C-API coupling 
were initialized. Further, the Pimple algorithm was executed, and at each time step, data obtained from the 

rhoPimpleCentralFoam-solver were fed to the NumPy array. Further, the data were retrieved from the NumPy array for 

performing SVD/autoencoder calculations. Finally, the processed data were fed back to the flow solver for writing the data 
in OpenFOAM I/O format.  

The validated 2D computational setup of backward facing setup by Janhavi and Roy [11] was used to perform SVD 

and autoencoder calculations in this study. The free stream velocity is 520 m/s, Reynolds number is 1.024×105 and Mach 
number is 2. The static temperature and pressure are 167 K and 35 kPa, respectively [19]. The computational geometry 

comprises top and bottom walls where no slip and zero pressure gradient boundary conditions were applied [11]. Uniform 

velocity boundary conditions were used at the inlet, whereas zero gradient boundary conditions were provided at the outlet 

boundary. The turbulence fields were modelled using SST k-ω models in conjunction with rhoPimpleCentralFoam-solver 
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in OpenFOAM. The number of grids selected was 180 and 150 in the axial direction and radial direction, respectively based 

on the grid independence study [11]. The results obtained are discussed in the subsequent section. 
 

 
Fig. 2. Flow chart of the coupled Python and rhoPimpleCentralFoam solver 

 

 

3. Results and Discussion 
The results obtained from SVD and autoencoder for the supersonic flow over a backward facing step using the coupled 

solver are highlighted in this section.  
Figures 3 and 4 illustrate the four singular vectors corresponding to four different flow modes for the u-component 

and v-component velocity, respectively which were obtained using the streaming SVD at the final time step. The first singular 

vector in Fig. 3 represents Mode 1 of the u-component, which accounts for 96.887% of the total energy. This dominant mode 
primarily captures the mean flow behaviour, reflecting the overall characteristics of the flow field. Specifically, it highlights 

key flow features, such as boundary layer separation, shock wave formation, and the general flow patterns in the system. 

Additionally, Mode 1 effectively represents the formation of the expansion and reattachment waves, as well as their 

interaction with the step and the downstream regions of the flow. The first singular vector of the v-component, i.e. mode 1 
shown in Fig. 4 captures 83.736 % of energy and reveals a well-defined expansion region downstream of the step. Mode 2 

of u-component and v-component velocity captures 1.749 % and 9.135 % of energy, respectively. Here singular vectors show 

high values near the step edge, indicating that these modes are related to localized flow features near the step. The structure 
obtained in mode 3 for the u-component is quite similar to the mode 3 for the v-component. Additionally, mode 4 exhibits 

similar structures as observed in modes 1 and 2 for both the velocity components. However, the energy associated with 

modes 3 and 4 is significantly lower compared to mode 1.  Figure 5 provides a comparison between the velocity field obtained 
from the hybrid solver and the velocity field reconstructed from the SVD using the four modes. The reconstructed velocity 

field, while derived from only four modes, provides a remarkably accurate representation of the major flow features. This 

includes important flow phenomena such as the recirculation zone, shock wave, and expansion fan. The reconstructed 

velocity field shows a high level of agreement with the results obtained from the CFD simulations, demonstrating the 
effectiveness of using these modes to capture the essential features of the flow field, even when fewer modes are used. 

Further, a deep neural network autoencoder was used to compress the flow-field information mainly to demonstrate 

the coupling of Python-rhoPimpleCentralFoam-solver. In this study with a batch size of 128 snapshot of u-component were 
collected and were used to train the deep neural network. Further the trained network weights were used to reconstruct the 

u-component velocity at the end of 1000 iterations. Figure 6 presents a comparison between the u-component velocity field 

obtained from the hybrid solver and reconstructed u-component velocity produced by the autoencoder. It may be observed 
that the reconstructed velocity field closely resembles the actual solution obtained from the CFD simulation. This indicates 
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that the autoencoder, by learning the nonlinear relationships between the low-dimensional embeddings and the original high-

dimensional velocity field, can effectively approximate the flow field. 
 

 

 
 

 

 
Fig. 3. Four singular vectors for u-component at the final time step 

 

                                                            

 

                                               

 
 

Fig. 4. Four singular vectors for v-component at the final time step 
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Fig. 5. Velocity magnitude obtained from (a) hybrid solver and (b) reconstructed-SVD 
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                                                                      (a)                                  (b)  

Fig. 6. u-component velocity obtained from (a) hybrid solver and (b) reconstructed-autoencoder 

 

 
4. Conclusion 

This article discusses the integration of PythonFOAM with the hybrid pressure-based solver, i.e., 

rhoPimpleCentralFoam, focusing on its application to the supersonic flow over a backward facing step case. The primary 

aim of this study was to validate the coupling of these two solvers through the use of streaming SVD and a deep neural 
network autoencoder. The flow field calculations were initially performed using RANS-based turbulence model with the 

hybrid pressure-based solver. To begin with, streaming SVD was applied to extract the coherent structures present in the 

flow field. The four modes derived from the SVD analysis revealed crucial flow features such as boundary layer separation, 
shock wave formation, and the overall flow patterns within the system. By utilizing these derived modes, the velocity field 

was then reconstructed, and the mean flow field obtained closely resembled the original solution, demonstrating the 

effectiveness of this technique in capturing the essential characteristics of the flow. Additionally, a deep neural network 

autoencoder was employed to compress the flow-field information. This step was mainly intended to demonstrate the 
successful coupling of PythonFOAM with the rhoPimpleCentralFoam-solver. The autoencoder learned a low-dimensional 

representation of the velocity field, and upon decoding, the reconstructed velocity field was found to closely match the actual 

solution obtained from the CFD simulation, further validating the approach. This study highlights the successful coupling of 
these two solvers and establishes a solid foundation for the development of reduced-order modelling techniques. These 

techniques have significant potential in addressing and solving complex flow problems by reducing the computational cost 

and enhancing the efficiency of simulations.  
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