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Abstract - This study investigates the linear and nonlinear stability analysis of thermal convection in a fluid layer 

overlying a highly porous material, subjected to a vertical magnetic field and maintained at a constant wall temperature. A 

two-layer approach is adopted, where the Darcy-Brinkman model is used to describe fluid flow within the porous medium. 

The influence of the magnetic field on both linear and nonlinear stability is analysed. The Chebyshev-Tau-QZ spectral 

method is employed to solve the coupled ordinary differential equations, formulated as an eigenvalue problem. This approach 
is particularly advantageous for fluid-porous convection problems due to its high accuracy. Nonlinear stability analysis is 

conducted using the energy method, and the results are validated against existing literature. The magnetic field shows 

stabilizing effect and with increase in depth ratio also revealed stabilizing effect. The findings of this study have significant 
applications in geophysical fluid dynamics, magnetohydrodynamics, and industrial processes such as thermal insulation, 

cooling systems, and crystal growth, where heat transfer in porous-fluid systems plays a critical role. 
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1. Introduction 

This study investigates the growth and evolution of both infinitesimal and finite disturbances in a channel where a free 

fluid layer overlies a porous medium, with no-slip at the walls, constant-temperature boundaries, and a transverse magnetic 

field. Such configurations are found in MHD heat exchangers, microfluidic thermal-management systems, and 
electromagnetically enhanced oil recovery, where accurately predicting the onset of convection (via critical Rayleigh and 

Hartmann numbers) and its subsequent nonlinear development is crucial for safe, efficient operation. By elucidating how 

slip length, permeability contrasts, and magnetic damping jointly influence stability, this work bridges pore‐scale Darcy–
Brinkman dynamics and bulk flow behaviour, providing actionable guidelines to delay transition, maximize heat transfer, 

and inform geophysical and industrial designs. As a result, the study of channels partially filled with porous media has gained 

significant attention, leading to a variety of investigations due to their relevance in numerous industrial and geophysical 
applications [1–6]. Among these, A.A. Hill and B. Straughan [7,8] adopted a dual-layer approach based on the Darcy–

Brinkman model to describe fluid flow through the porous medium. Their formulation included a tangential stress jump 

condition at the interface between the clear fluid and the porous region, making it suitable for modeling high-porosity 

materials such as metal foams commonly used in heat exchangers and fluid filtration systems. 
Hill and Straughan [9,10] studied the stability of Poiseuille flow in a three-layer system fluid, Brinkman transition, and 

Darcy porous layers identifying two key instability modes influenced by layer depths and transition thickness. The Brinkman 

layer notably suppressed a third mode seen in simpler models. Numerical results aligned with previous studies. Additionally, 
the magnetic field plays a crucial role in the onset and control of convection by exerting a damping force (Lorentz force) that 

stabilizes fluid motion. In this study, we consider the effect of a vertical magnetic field on a fluid overlying a porous medium, 

as such configurations are relevant in numerous engineering and geophysical applications, including nuclear reactors, crystal 
growth, MHD generators, and groundwater flow in magnetized environments [11]. 

 

2. Mathematical model 
The mathematical model is shown in Fig. 1and it is shown that both walls are kept at constant wall temperature with no 

slip wall conditions and vertical magnetic field is applied to a channel where fluid overlying a porous medium.  
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Fig. 1: Schematic physical model 

2.1. Governing equations 
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In Eq. (3) fJ  is the current density and 1  is the electrical conductivity. 
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In Eq. (7)  mJ  is the current density for porous region. 
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Boundary conditions [8] 
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Continuity of tangential stresses 
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In Eqs. (1)-(13), f

iu , 
fp , fT , t  are  velocity, pressure, temperature, and time in the fluid region,   is the dynamic 

viscosity, d  is the width of fluid region,   is Casson Parameter,
0
ˆB B k  is a magnetic field,   is coefficient of thermal 

expansion, g  is the acceleration due to gravity, 0T  is reference temperature, 0  is the reference density,  ix x,y,z , k̂  is 

unit vector,  m

iu ,
mp , mT  are velocity, pressure, temperature in  porous region, fK  is the thermal conductivity in fluid 

region, md  is the width of porous region, pc  is heat capacity,   is porosity, mK is the thermal conductivity in porous region, 

e  is the effective viscosity and is defined as e
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2.2. Perturbation method 

To evaluate the stability of the steady-state solution, we apply small perturbations to it, such that 
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2.3. Base state solutions 

The base state velocity and temperature in fluid and porous regions are defined as follows  
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In Eq. (21) rd  is the depth ratio. The governing Eqs. (1) -(13) are non- dimensionalized with given scaling parameters 

in Eq. (16).The non-dimensional form of governing equations is obtained after using a non-dimensional variable in Eqs. (1)

-(13) are  
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In Eq. (23)-(28), Ha  and mHa  are  Hartmann numbers in fluid and porous  regions, Da  is Darcy number, Pr  is Prandtl 

number, fR  is Rayleigh number in fluid region, mR  is Rayleigh number in porous region, , T , 1M  and 2M  are define as, ,
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2.4. Stability analysis 

Although linear instability analyses provide useful insights into the initiation of convection, they may fail to detect 

subcritical instability cases where convection starts before the thresholds predicted by linear theory. By measuring the 

discrepancy between the linear instability threshold and the nonlinear stability limit, one can assess how accurately and 
reliably linear theory predicts the onset of convection. 

 

 
 

 

2.5. Linear stability analysis  
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The linearized equations are derived from Eqs. (23)- (27)  by discarding the nonlinear terms and taking a double curl of 
Eqs. (23) and (26), and eliminating the pressure term, taking out the third component assuming normal modes [12] of the 

form   
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2.6. Nonlinear stability analysis 

Using the Energy method as given by Straughan [13]. Let us define V to represent the period of a cell in the porous layer 

and introduce the notation of norm in the inner product space  2L V  as follows: 
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Now, again applying double curl to Eqs. (51) and (53), and eliminating the terms f and m , taking out the third 

component using normal modes,  and obtained the following coupled ordinary differential equations 
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To determine the critical nonlinear Rayleigh number, defined as 
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3. Numerical method 

 
The Chebyshev Tau-QZ spectral method [14] is a powerful numerical technique used to solve linear stability problems, 

particularly eigenvalue problems arising in fluid dynamics and other areas of applied mathematics. It combines the 
Chebyshev spectral method, which offers high accuracy by expanding the solution in terms of Chebyshev polynomials, with 

the Tau method, which enforces boundary conditions by modifying the highest-order equations. The resulting generalized 

eigenvalue problem is then efficiently solved using the QZ algorithm, which is well-suited for large, non-symmetric systems. 
This method is especially effective for problems with complex boundary conditions and provides exponential convergence 

for smooth solutions. 

4. Results and discussions  
The couple ordinary differential equations are obtained and are solved using the Chebyshev Tau-QZ spectral method 

[14] and considering the physical values T  0.7 and 0.9, 6Pr  , 0 79.  , 65 10Da   , 10M  . 

4.1. Validation 

 

The validation of present study is validated with Hill and Straughan [8] when depth ratio rd = 0.100, 0.116 and 0.15, 

T =0.7, 0 7T .  , 6Pr  , 0 79.  , 65 10Da   , 10M  and when taking Hartmann number 0Ha   then present study 

found to be coincide with Hill and Straughan[8] as shown in Fig.2. 
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Fig.2. The validation of present work with Hill and Straughan [8] when 0Ha   

4.2. Marginal stability plots  
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Fig.3. Marginal stability plots when (a) 0.1Ha   (b) 2Ha   (c) 5Ha   at  
0.7T 
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Fig.4. Marginal stability plots when (a) 0.1Ha   (b) 2Ha   (c) 5Ha   at  
0.116rd 

 

 
Marginal stability plots delineate the boundary between stable and unstable regimes by identifying the critical Rayleigh 

number at which convection sets in under varying system parameters. Here, the depth ratio r md d d . As rd  increases, 

indicating a relatively thicker fluid layer, the critical Rayleigh number also rises, reflecting greater system stability. A sharp 

drop in Rayleigh number at low wave numbers fa  signals fluid-dominated instability driven by buoyancy, while the 

minimum at intermediate fa  marks the most unstable mode, where both fluid and porous layers play significant roles. At 

higher fa , the Rayleigh number rises steadily, indicating porous-dominated behaviour where the resistance of the porous 

medium suppresses convection. Nonlinear (dashed) curves lie below linear (solid) ones, capturing the earlier onset of 
instability due to nonlinear effects. It can be seen that as Hartmann number increases there is increase in upward shift of the 

marginal plots which shows the stabilizing effect of magnetic field as shown in Fig. 3. Similar, variation can also be seen in 

Fig. 4 with variation of T  when Ha 0.1,2 and 5 both have stabilizing effect T  which is the ratio of thermal conducting 

of fluid region to thermal conducting of porous region and Hartmann number. 
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Fig.5. Variation of critical Rayleigh number 
f

cR
 with Hartmann number Ha  when (a) 

0.7T 
 and (b) 

0.9T 
 

The variation of critical Rayleigh number f

cR  with Hartmann number Ha  when  0.7T   and 0.9T   with varying 

depth ratio rd  as shown in Fig.5 which clearly shown that stabilizing effect and with increasing in the T  also increases the 
f

cR  value which also shows the stabilizing effect. Physically, the Hartmann number represents the strength of the applied 

magnetic field. A higher Ha  induces a stronger Lorentz force that damps velocity fluctuations, thereby stabilizing the flow 

and increasing the critical Rayleigh number as seen in linear stability shown with solid line whereas in nonlinear case f

cR  

remains same but there is increase in f

cR  when 0.9T   in nonlinear case. 

 
4.3. Streamlines and Isotherms 

  

(a) (b) 

Fig.6 (a) Streamline 
f
= constant and (b) Isotherm 

f = constant at 0.5Ha   when 0.05dr  , T = 0.7 

  
(a) (b) 

Fig. 7. (a) Streamline 
f = constant and (b) Isotherm f = constant at 5Ha   when 0.05dr  , T = 0.7 

To illustrate the evolving instability patterns across different flow regimes, streamlines and isotherm plots are presented 

in Figs. (6) and (7) as part of the linear stability analysis. Here, curves denote streamlines 
f and curves denote isotherms 

f  The range of z  coordinate is taken from -1 to 1, whereas the range of x  coordinate is taken from 0 to 2 f

ca .  Each 

streamline and isotherms contour plots are plotted corresponding to the critical Rayleigh number and critical wave number, 

 f f

c cR ,a  of the corresponding given value. It is depicted in Fig. 6 and 7 streamlines and isotherms move away from bottom 

to top of the upper wall due to increase in the Hartmann number Ha  from 0.5Ha  to 5Ha  when 0.05rd  , T = 0.7. As 

the Hartmann number Ha  increases from 0.5 to 5, the streamlines and isotherms shift upward toward the top wall. This 

occurs due to the increasing Lorentz force, which acts as a magnetic damping on the fluid motion, suppressing convection 
especially in the lower region. As a result, flow weakens near the bottom and concentrates near the top, leading to elongated 
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rolls and vertically stretched isotherms. This reflects reduced convective strength and enhanced thermal stratification, 
consistent with the stabilizing effect of a stronger magnetic field. 

 
5. Conclusions 

The key findings of this study are derived from both linear and nonlinear stability analyses conducted on a channel 

where a fluid overlies a porous medium. The system includes a vertically applied magnetic field, no-slip wall conditions, 

constant wall temperatures, and an interface condition at the fluid-porous boundary. 
1. Instability is dominated by buoyancy in the fluid layer at low wave numbers, while at higher wave numbers, porous 

resistance stabilizes the flow. Increasing Hartmann number and thermal conductivity ratio further enhance stability, 

as reflected by the upward shift in marginal stability curves. 

2. Hartmann number shows the stabilizing effect due to increases in critical Rayleigh number delays the onset of 
convection. 

3. As depth ration increases due to increase in fluid region also shows stabilizing effect because critical Rayleigh 

numbers increase and  T  also have stabilizing effect as f

cR increases due to increase in thermal conductivity in fluid 

region which in turns delays the onset of convection. 
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