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Abstract - Accurate leak localization within district heating networks (DHNs) is a significant challenge due to the complex hydraulic 

dynamics that govern these systems. Traditional methods for leak detection, such as manual inspections and thermal imaging, are often 

inefficient for real-time applications. Recent advancements in artificial intelligence (AI), particularly artificial neural networks (ANNs), 

offer promising solutions by analysing pressure and temperature variations in DHN pipelines to identify leak locations. This paper 

explores the potential of AI-driven techniques for improving leak localization accuracy within DHNs. Using synthetic data generated 

with a Modelica-based simulation of DHN conditions in Grenoble, France, the study evaluates the impact of pressure and temperature 

sensors installed in DHN. The model was developed and trained using multi-class classification techniques, with the dataset balanced via 

Random Under Sampling (RUS) to address class imbalances. Feature selection was performed using Random Forest to identify the most 

critical input features, which were then used in the ANN for leak localization. The results demonstrate the effectiveness of pressure 

sensors, particularly in the return lines, for enhancing leak localization precision, while temperature sensors, though less directly 

indicative of leaks, also contribute valuable insights. The study concludes that AI-based approaches, coupled with strategically placed 

sensors, can significantly improve the accuracy and efficiency of leak localization in DHNs, contributing to more effective predictive 

maintenance and reduced system downtime.  
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1. Introduction 
District heating networks (DHNs) cover extensive urban areas, presenting a significant challenge in leak localization, 

which is critical for ensuring efficient operation and minimizing maintenance costs. While leak detection has been 

extensively studied [1], [2], accurately pinpointing the exact location of leaks remains a complex issue due to the intricate 

hydraulic dynamics inherent in DHNs. Traditional methods, such as manual inspections or thermal imaging [3], are often 

costly and time-intensive, limiting their practicality for real-time detection. However, the integration of digital technologies 

and artificial intelligence (AI)-driven analytics offers a promising alternative, enabling real-time leak localization and 

improving both operational efficiency and service reliability. 

Recent advancements in artificial intelligence, particularly artificial neural networks (ANNs), have shown considerable 

promise in various applications, including fault detection [4], anomaly identification [5], and time series forecasting within 

energy systems [6]–[8]. By analysing pressure and temperature variations in DHN pipelines, where leaks are more likely to 

occur due to thermal stress and pressure fluctuations, AI models can accurately infer the location of leaks. The strategic 

placement of sensors in these return lines is critical for optimizing the performance of AI-based localization techniques. 

This paper investigates the potential of AI-driven approaches to enhance the accuracy of leak localization within DHNs, 

utilizing data from pressure and temperature sensors. The ANN model is trained using synthetic data generated with an in-

house CEA library based on Modelica, simulating real climatic conditions in Grenoble, France, during the years 2019 and 

2020. To improve model performance and interpretability, feature selection is performed using a Random Forest (RF) 

algorithm to identify the most relevant sensor inputs for leak localization. This study assesses the effectiveness of AI 

techniques in refining leak localization, contributing to more efficient maintenance strategies and reduced system downtime.  
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2. Related works 
Various methodologies have been explored for leak detection and localization in DHNs, ranging from traditional 

physics-based models to advanced AI-driven approaches. Among these, AI-based techniques have shown significant 

promise due to their ability to analyse large datasets and recognize complex patterns. 

Xue et al. (2020) applied the XGBoost algorithm to detect leakage faults based on flowmeter and pressure sensor 

data variations [9]. Losi et al. (2024) developed a data-driven diagnostic method using the NARX model to monitor 

DHNs in real time, demonstrating fault detection through time-series data analysis [10]. Zhou et al. (2024) combined 

ANNs with principal component analysis to diagnose multiple faults, including leaks and blockages [11]. However, 

these studies focus primarily on leak detection, leaving a gap in the accurate localization of leaks. 

Beyond purely AI-based methods, hybrid approaches integrating AI with physical modeling have gained traction. 

Losi et al. (2023) further refined this approach by incorporating NARX with physics-based diagnostics, improving both 

detection and localization capabilities [12]. Yang et al. (2024) compared physical model-based and data-driven leak 

localization techniques, utilizing hydraulic simulations to enhance precision [13]. Additionally, Perpar and Rek (2021) 

investigated the use of soil temperature gradients for leak detection, showing that thermal anomalies are effective 

indicators of pipeline faults [14]. Thermal imaging remains a valuable tool for leak detection and localization, though it 

is not suitable for real-time applications. Vollmer et al. (2023) introduced an automated analysis program to reduce false 

alarms in airborne thermographic assessments [3], while Protić et al. (2024) demonstrated the effectiveness of UAV-

mounted thermal cameras for identifying heat losses and localizing leaks in DHNs [15].  

Despite significant advancements, challenges persist in optimizing sensor placement and improving the accuracy 

of AI models for leak localization in DHNs. This study addresses these challenges by evaluating the impact of pressure 

sensors in the return pipelines and temperature sensors of DHNs, where leaks are most likely to occur. By leveraging 

artificial intelligence, specifically RF and ANNs, the proposed methodology aims to enhance leak localization precision 

and establish a data-driven framework for predictive maintenance within DHNs. 

In this context, the study makes two primary contributions: First, it provides a comprehensive analysis of how 

pressure and temperature sensors in the return lines can enhance the accuracy of AI models for leak detection and 

localization. Second, it presents empirical results that demonstrate the effectiveness of this approach in improving the 

reliability and sustainability of DHNs. By utilizing data from these sensors, the study aims to develop more robust AI 

models that improve both leak detection accuracy and leak localization precision. Ultimately, this approach contributes 

to reducing operational costs and minimizing service disruptions. 

 

2. Methodology 
2.1. District Heating Network Model: Overview and Data Insights 

A linear network model from the DistrictHeating library [16] is used to simulate DHN leak faults. The model 

consists of a thermal plant supplying heat to 𝑛𝐶 consumers placed linearly along the network, with equal spacing and 

no branches. The plant and the first consumer are co-located. Pipe diameters are designed for a nominal velocity of 

2 𝑚/𝑠 and constant pressure gradient. The supply temperature 𝑇𝑁,𝑠𝑢𝑝𝑙𝑦 is determined by an expert law based on external 

temperature. The plant pump maintains a differential pressure 𝛥𝑃 so that the last consumer 𝑛𝐶 meets a setpoint 𝛥𝑃𝑠𝑝. 

Each consumer’s demand 𝑄𝑐,𝑑 is derived from a global demand 𝑄𝑁𝑑  using normalized weights 𝛼𝑐, Eq. (1). The mass 

flow rate �̇�𝑐𝑑 is calculated to meet local demand, considering heat and charge losses. Valve openings 𝑣𝑜𝑐 are adjusted 

to achieve the desired flow; if not possible, the valve remains fully open, and resulting temperatures and flow rates are 

computed. 

∀ 𝑐 ∈ [1, 𝑛𝐶],   𝑄𝑐,𝑑 = 𝛼𝑐 ∙ 𝑄𝑁𝑑 (1) 

For fault simulation, hydraulic leaks were introduced at the start of each pipe (𝑛𝐶 − 1 locations) using valves 

connected to ambient air. The leak flow rate depends on local pressure and valve opening 𝑖𝑙𝑒𝑎𝑘 , which varies along the 

network. No additional fluid is injected into the network during leaks, assuming a compressor maintains pressure. 

The studied DHN has a nominal demand of 6 𝑀𝑊, yearly demand of 28 𝐺𝑊ℎ, and a 6.5 𝑘𝑚 supply/return line 

with 10 equally spaced consumers. External temperature is constant at 15°𝐶, and pipes have 15 𝑐𝑚 insulation with 
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0.04 𝑊/𝑚 · 𝐾 conductivity. Substations are sized for 0.6 𝑀𝑊, with primary temperatures of 90/55°𝐶 and secondary 

temperatures of 70/50°𝐶. 

Simulations were conducted over a four-week period using predefined boundary conditions, including the external 

temperature in Grenoble, France, thermal load, and supply temperature, for the years 2019 and 2020. Six time series 

representing the first 6 periods of a typical year were used. Leaks were simulated at nine locations on the return line with 

with random start times and intensities 𝑖𝑙𝑒𝑎𝑘 ∈ [0.2,1]. A total of 2268 simulations were performed, each recording 8065 

instances of over 34 variables every 5 minutes. More details are presented in [1]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Schematic diagram of the linear network model utilized for simulating hydraulic leaks. 

 
2.2. AI model development 

This section describes the methodology used in building, training, and evaluating the model for multi-class classification. 

The process involves several stages, including data preprocessing, model architecture design, training, and evaluation. 

 
2.2.1. Data pre-processing 

To address class imbalance, Random Under Sampling (RUS) was applied to the dataset [17]. The dataset, initially 

consisting of features 𝑋0 and labels 𝑌0, was combined into a single DataFrame. The RandomUnderSampler from the imblearn 

package was used to balance the dataset by reducing the instances in the majority class, ensuring that the class distribution 

was even across the training and testing sets. Mathematically, the goal is to make the sizes of the majority class and the 

minority class equal. Additionally, One-Hot Encoding was applied to the target variable 𝑌, converting categorical labels into 

binary vectors. Furthermore, input features 𝑋 were standardized to have zero mean and unit variance. This scaling ensures 

that all features contribute equally to the model, which is particularly important for models that use gradient-based 

optimization. 

 
2.2.2. Feature importance analysis using random forest 

To enhance leak localization accuracy in the DHN model, a RF-based feature selection layer was integrated prior to the 

ANN. This hybrid approach leverages RF’s ability to identify the most important features, which are then fed into the ANN 

for improved pattern recognition and leak detection and localisation. In this study, the features consist of data collected from 

temperature and pressure sensors installed along the DHN, providing critical insights into the network’s operational state. 

Additionally, this approach was used to evaluate the pertinence of pressure sensors installed in the return pipes of the DHN, 

determining their contribution to fault localization using the ANN. This methodology offers several benefits, including 

interpretability, reduced dimensionality, and improved model performance, by focusing on the most relevant sensor data. 

RF was trained on the pre-processed dataset to calculate feature importance based on their contribution to reducing 

impurity (e.g., Gini impurity) across decision trees [18]. The importance of feature 𝑗 is computed as : 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑗) =  
1

𝑁𝑡𝑟𝑒𝑒𝑠
∑ ∑ ∆𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑗, 𝑡)

𝑡∈𝑇𝑇

 (2) 
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where 𝑁𝑡𝑟𝑒𝑒𝑠 is the number of trees, 𝑇 represents a tree, and 𝑡 is a node in 𝑇. The top 𝑘 features with the highest 

importance scores, derived from temperature and pressure sensor data, were selected for input to the ANN. This process 

highlighted the significance of pressure sensors in the return pipes, quantifying their relevance in fault localization. 

 
2.2.3. ANN model architecture 

The model architecture is structured as a feed-forward ANN comprising multiple hidden layers [6]. Non-linear 

activation functions, such as the relu, tanh, and sigmoid, are applied within the hidden layers to enable the network to 

learn complex, non-linear relationships within the data. The output layer utilizes the softmax activation function to 

produce a normalized probability distribution over the target classes, facilitating multi-class classification. 

Each hidden layer can be described by the equation: 

𝑧𝑖 =  𝑊𝑖𝑥 + 𝑏𝑖 (3) 

where 𝑊𝑖 and 𝑏𝑖 are the weights and biases of the 𝑖 − 𝑡ℎ layer, and 𝑥 is the input vector. The softmax activation 

for the output layer is given by: 

�̂�𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

 (4) 

where 𝑧𝑖 is the input to the softmax layer for class 𝑖, and 𝐶 is the number of classes. 
 
2.2.4. Model training 

The model is trained using the Adam optimizer [4], which adapts the learning rate during training. The training 

objective is the categorical cross-entropy loss, given by: 

𝐿 =  − ∑ 𝑦𝑖log (�̂�𝑖)

𝐶

𝑖=1

 (5) 

where 𝑦𝑖 is the true label and �̂�𝑖 is the predicted probability. Training continues until convergence or until early 

stopping halts the process. Early stopping monitors the validation loss and stops the training when no improvement is 

observed after a set number of epochs. Additionally, learning rate scheduling is used, where the learning rate is reduced 

by a factor when the validation loss plateaus, helping the model converge more effectively. 

 
2.2.5. Model evaluation 

After training, the model is evaluated on the test set using multiple metrics such as accuracy, precision, recall, and 

F1-score to provide a comprehensive assessment of the model’s performance [19], [20]. A confusion matrix is also 

generated to visualize the classification performance [4]. This matrix breaks down the number of true positives, false 

positives, true negatives, and false negatives for each class, providing deeper insights into model errors and the overall 

performance across all classes. 

 

3. Results and Discussion 
3.1. Relevance of temperature and pressure sensors in leak localization 

Based on the bar plot of the RF importance scores presented in Figure 2, several conclusions can be drawn regarding 

the relevance of temperature and pressure sensors in leak localization. The localization of leaks in DHNs relies heavily 

on the data provided by temperature and pressure sensors installed along the network. Pressure sensors, in particular, 

play a critical role in leak detection due to their sensitivity to changes in the hydraulic conditions of the network. As 

depicted in Figure 2, pressure sensors pres_ret_2 to pres_ret_10 have the highest importance scores, making them the 

most effective features for locating leaks. When a leak occurs, the pressure drop propagates through the pipes, and the 

magnitude of this drop varies depending on the leak’s location and size. This makes pressure sensors highly effective 

for pinpointing leaks. However, not all pressure sensors contribute equally to leak localization. For instance, pressure 

sensor pres_ret_1, installed at the heat production plant, maintains a constant value of 5 bar due to its role in regulating 

the network’s supply pressure. As a result, pres_ret_1 provides no meaningful variation in data and thus has no 

contribution to leak localization, as confirmed by its near-zero importance score in the RF feature importance analysis. 
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Temperature sensors, while less directly sensitive to leaks compared to pressure sensors, still provide valuable 

information. They capture thermal dynamics within the network, which can indirectly indicate anomalies such as leaks. For 

For example, temperature sensors installed at the last substation (Substation 10) on the primary side, along with power 

demand data, exhibit moderate importance scores in the RF analysis. Although their scores are not as high as those of pressure 

pressure sensors, they still contribute to the overall leak localization process, particularly in scenarios where pressure data 

alone may be insufficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Sensors importance using Random Forest analysis. 

 

3.2. Influence of input feature selection on leak localization performance 

To further investigate the impact of input feature importance on the performance of the leak localization model, three 

input scenarios were designed based on the RF importance scores. In the first scenario, only the nine most important features 

were selected, corresponding to the highest-scoring pressure sensors (e.g., from pres_ret_02_bar to pres_ret_10_bar). The 

second scenario expanded upon this by including three additional features: the power demand (P_dem_kW) and the 

temperatures measured on the primary side at substation 10 (TIN_p_10_degC and TOUT_p_10_degC), resulting in a total 

of twelve features. The third scenario incorporated all the features presented in Figure 2, excluding T_ret_degC and 

pres_ret_01_bar, as these exhibited negligible importance scores according to the RF analysis. For each input scenario, a 

systematic hyperparameter tuning process was carried out to ensure the optimal configuration of the ANN. This 

comprehensive evaluation enables a better understanding of how feature selection, guided by feature importance analysis, 

influences the overall effectiveness of the leak localization model. 

 
3.3. Scenario-based results and analysis 

The performance of the ANN models was assessed based on accuracy, precision, recall, f1-score, and confusion 

matrices for each of the three scenarios. It is important to note that the leak localization task is formulated as a classification 

problem, where classes 1 to 9 correspond to specific leak locations, and class 0 indicates the absence of a leak. The optimal 

hyperparameters, determined through RandomSearch optimization for each scenario [4], are presented in Table 1. 

  



 

 

 

 

 

 

220-6 

 
Table 1: Optimal Hyperparameters per Scenario. 

Scenario Hidden layers Neurons per layer Activation L2 Regularization Dropout Rate Learning Rate 

1 3 136-160-152 relu 1.71 10−4 0.1 1.25 10−4 

2 3 192-112-96 relu 3.29 10−5 0.2 1.34 10−4 

3 2 240-168 tanh 3.38 10−5 0.3 1.81 10−4 

 

Scenario 1: Nine most important pressure sensors 
Using only the nine most important pressure features, the model achieved an overall accuracy of 80%. Classes 

corresponding to leak positions (1 to 9) were generally well classified, with precision and recall scores ranging from 

moderate to high. Notably, leaks located at positions 1, 4, and 7–9 achieved high precision and recall values, reflecting 

the strong discriminative power of pressure data for these locations. However, classification performance for class 0 (no 

leak) was significantly lower, with a precision of 0.56 and recall of 0.54. This indicates that using only pressure 

measurements, the model struggled to confidently identify the absence of leaks, likely due to the fact that pressure 

variations alone are not always sufficient to differentiate between normal operation and small leaks. The confusion 

matrix revealed some misclassifications between adjacent leak positions, highlighting a limitation in the model’s spatial 

resolution when using a restricted set of features, Figure 3-a. 

 

Scenario 2: Nine pressure sensors plus temperature and power demand data 

In the second scenario, the inclusion of temperature readings (TIN_p_10_degC, TOUT_p_10_degC) and power 

demand (P_dem_kW) led to a substantial improvement in model performance, with the accuracy increasing to 87%. 

Notably, the precision and recall of class 0 improved to 0.68 and 0.84, respectively. This confirms the complementary 

value of thermal and demand information in distinguishing between no-leak and leak scenarios, particularly when 

hydraulic indicators are insufficient. Leak positions, especially classes 3, 5, 6, and 9, benefited from higher recall values, 

suggesting that the added features captured additional system behaviors associated with different leak conditions. The 

confusion matrix showed fewer misclassifications compared to Scenario 1, Figure 3-b, demonstrating that combining 

hydraulic and thermal data leads to a more robust and accurate leak localization model. 
 

Scenario 3: Almost all features except low-importance ones 
In the third scenario, where 32 features were used, the model achieved the highest accuracy of 90%. The 

performance across all classes improved, with class 0 reaching a precision of 0.79 and an outstanding recall of 0.97, 

indicating that the model became highly reliable in detecting the absence of leaks. Moreover, leak locations achieved 

uniformly high f1-scores, generally above 0.85, with several classes (especially classes 7, 8, and 9) reaching f1-scores 

close to 0.95–0.96. The confusion matrix showed minimal misclassification, Figure 3-c, confirming that a rich feature 

set capturing both hydraulic and thermal network behavior enables the ANN to learn highly distinctive patterns for each 

leak scenario. However, it is worth noting that while increasing the number of input features improved accuracy, it also 

increased the model’s complexity, potentially leading to longer training times and a higher risk of overfitting if not 

properly regularized. The applied L2 regularization and dropout strategies proved effective in mitigating these risks. 
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                                     (a)  (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                 (c) 

Fig. 3: Confusion matrices for (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3. 
 

4. Conclusion and Perspectives 
The research emphasizes the significant role of AI techniques, particularly ANNs, in improving leak detection and 

localization within district heating networks (DHNs). The findings underscore the importance of precise sensor placement 

to enhance detection and localization accuracy and operational efficiency. By integrating AI and machine learning methods, 

it is possible to address key challenges in leak fault localization, thereby optimizing the performance and energy efficiency 

of DHNs. Looking forward, our current project focuses on developing an AI-driven automatic library for sensor placement 

determination. This tool will leverage advanced algorithms to identify the most relevant sensor locations, thereby improving 

machine learning performance for leak detection and localization systems. The application of such AI-based solutions is 

expected to enhance the accuracy, reduce costs, and improve the overall efficiency of monitoring and energy management 

in DHNs. 
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