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Abstract - The paper describes the theoretical framework and results of using an rapid three-dimensional super 

element model of oil field development. The model makes it possible to speed up calculation of two-phase filtration 

in an oil reservoir by hundreds of times owing to the use of large computational cells – super elements, the number 

of which corresponds to the number of wells in the field. Accuracy of the numerical solution is ensured by a 

formulation of the problem in terms of the smooth mean fields of pressure and saturation with a selective refinement 

of the solution in the near of the wells on independent detailed nested grids. 
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1. Introduction 
Simulation of oil field development is traditionally performed using full-scale filtration models 

(Roxar Tempest More, Sсhlumberger Eclipse, etc.) on computational grids with a cell size of 

approximately several tens of meters horizontally and tens of centimeters vertically. Such models require 

specification of an excessive number of parameters, and in case of large fields they contain millions of 

cells. This complicates their adaptation and makes it virtually impossible to use them for multivariant 

prediction calculations. 

To overcome these problems when optimizing the system of oil field development, it is proposed to 

use a super element modeling method (Mazo et al., 2011; Mazo et al., 2013). Compared to the traditional 

models, the super element model makes it possible to speed up calculation of two-phase filtration in an oil 

reservoir by hundreds of times owing to the use of large computational cells – super elements,  the 

number of which corresponds to the number of wells in the field. Satisfactory accuracy of the solution on 

a coarse grid is maintained due to the problem formulation relative to the smooth mean fields of pressure 

and saturation as well as due to the preliminary upscaling of the reservoir’s hydraulic and capacity 

properties and the use of independent detailed nested computational grids in cases of local refinement of 

the solution. 

This paper presents the basic principles and some of the results of constructing a super element 

model of oil field development. 

 

2. Computational Grid of Super Elements 
For constructing a grid of super elements in a horizontal plane, we use the algorithms of centered 

PEBI-segmentation (Palagi et al., 1991), which make it possible to build a predominantly hexagonal grid 

covering of the computational domain, in which case the centers of the computational blocks coincide 

with the initial control network (Du et al., 1999; Nikitin, 2010). The role of triangulation centers is 

performed by active vertical wells as well as additional centers that ensure a uniform coverage of the field 

area (Fig. 1). Unstructured computational grids simplify the description of reservoir geometry and the 

determination of boundary conditions. They also reduce the impact of grid orientation on the numerical 

solution (Heinemann et al., 1991). The division of the reservoir into super elements in the vertical 

direction is performed along the boundaries of the geological packs containing several permeable layers. 
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Fig. 1. Example of the coverage of an oil field by super element computational grid. 

 

3. Description of the Super Element Model 
The super element model is based on the known two-phase flow in porous media equations written 

without regard to capillary and gravity forces: 
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Here t  is the time; , ,x y z  are the Cartesian coordinates; p  is the pressure in the reservoir fluid; s  is the 

water saturation; m , k  are the porosity and absolute permeability of the reservoir; U  is the total flow 

rate;   is the compressibility; f  is the fraction of water in the flow (Buckley–Leverett function); 

,w o   are the viscosities of water and oil; ,w ok k  are the relative phase permeabilities, which are 

approximated  by the power-law dependences of the form 
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where **,s s  are the boundaries of phase mobility; 1 3n   . 

The three-dimensional equations (1) describe two-phase flow in the region D  representing the 

reservoir tapped by the system of input and output wells. The wells can be horizontal or vertical; 

generally, they are directional and operate either in the mode of the given pressures ( p ) or in the mode of 

the given flow rates ( q ). The boundary   of the region D  consists of the reservoir outer boundary (the 

impermeable apex T   and the bottom B  and the lateral boundary S  with the given hydrostatic 

pressure p  and the saturation s ) and the inner boundaries k  of the reservoir, formed by the well 

surfaces, on which the pressure and total flow are set: 
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Approximation of the equations (1)–(3) on the super element grid is constructed similarly as by the 

finite-volume method (Lipnikov et al., 2007), which ensures the persistence of the grid scheme. Super 

elements are used as finite volumes. In the solution process at each time moment t  for each super element 

with the volume V , we find the average pressure and water saturation 
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The general structure of the averaged equations is preserved: 
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Here V  is the set of the edges of the super element V ; q  and wq  are the flow rates of a two-phase 

fluid and water according to the wells in the super element; nU  is the projection of the flow rate on the 

external normal to the super element boundary; K  is the absolute permeability tensor, describing internal 

geological inhomogeneity of the super element and calculated by the upscaling of a three-dimensional 

field of absolute permeability;  1 2 1 22       is the average water permeability on the edge; 

the function ( )s  is the analogue of the function ( )s  on the scale of the super element and, as the 

averaged Buckley–Leverett function    F s f s , can be determined by upscaling of relative 

permeability curves. 

A low-dissipative approximation of the hyperbolic equation of saturation transport is constructed 

using a TVD method in its algebraic form (Kuzmin et al., 2003) in combination with the original 

approach to the correction of saturation movement, based on the analytic theory (Mazo et al., 2013). 

Problems of absolute and relative permeability upscaling are solved on detail computational grid 

using multigrid method and parallel algorithm for NVIDIA CUDA platform (Demidov et al., 2010). For 

problems of hydraulic fractures and tectonic faults method of direct QR-factorization is used (Davis, 

2011). 

It appears sufficient to use a coarse super element grid for cumulative adaptation of the model. The 

high accuracy of the numerical solution near the computational domain’s geological and technological 

features (tectonic faults, high permeable lens inclusions, paleochannels, vertical and horizontal wells, and 

hydraulic fractures) is achieved by solving the auxiliary problems on fine nested grids (Fig. 2). 
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Fig. 2. Scheme of building local refinement (2) of a super element grid (1) in a domain requiring improved 

calculations in the vicinity of the wells (3). 

 

4. Simulation Results 
Fig. 3 demonstrates reconstruction of the production history of a reservoir by the super element 

method. It shows the reservoir flooding dynamics in the form of current oil saturation maps and presents 

the graphs of real and calculated cumulative indicators of reservoir development, i.e. current and 

summary oil extraction. The oil field contained 623 wells; the two-dimensional segmentation included 

1873 cells with an average planned size of 500 meters. In four interlayers, 7 573 super elements were 

allocated (with an additional separation along the surface of the oil-water contact). The reconstruction 

time for the reservoir’s 55-year history of development made up only 80 seconds on personal computer 

with processor AMD Athlon™ 64 X2, DualCore, 1.79 GHz. 
 

 
Fig. 3. Computational field of oil saturation (1-5) after each 10 years of development, and the graph of the calculated 

and actual oil recovery and water fraction (3) 
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5. Conclusion 
Testing of the model on the real oil fields and comparison between the results from numerical 

simulation and the corresponding results obtained using the traditional models on small grids confirm 

wide opportunities and prospects of the super element model for rapid calculations. It is possible to speed 

up simulation of oil reservoir development by hundreds of times using the super element method without 

significant loss of accuracy. 

The super element model is able to describe arbitrarily oriented wellbores, hydraulic fractures, 

tectonic faults and geological bodies. In each individual case, this requires using auxiliary fine grids and 

solving the corresponding mathematical problems. 

The model is implemented by an ongoing software system for maintenance and monitoring of oil 

field development, which helped build the super element models for the development of a number of 

fields in Kazakhstan and Russia. 
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