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Abstract - This paper describes a transformative surface heat flux and temperature calibration method for 

resolving inverse heat conduction problems. In hypersonic flight, high temperatures and heat fluxes ensue on both 

the external portion of the flight vehicle and inside the combustor. These locations require specialized and often 

non-receding materials for their thermal protection systems.  A new calibration methodology is presently under 

development for estimating surface heat flux and temperature based on in-depth temperature measurements 

applicable to coupon or plug geometries composed of multi-regions and/or orthotropic materials.  The resulting 

mathematical system produces Volterra integral equations of the first kind where the unknown is either the net 

surface heat flux or temperature.  Regularization is required in order to extract a stable and accurate prediction. 

Uncertainties associated with probe(s) location, thermophysical properties, and sensor properties are removed from 

the analysis.  Hence, a substantial reduction in systematic errors takes place when resolving inverse heat conduction 

problems in this manner. 
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1. Introduction 
Ground testing plays an important preparatory role for flight tests of high-speed vehicles. At 

hypersonic speeds, high temperatures and heat fluxes are produced on the flight vehicle’s external 

structure. Well-designed thermal protection systems (TPS’s) are required to maintain flight integrity by 

managing thermal penetration into the vehicle. Inverse heat conduction analysis (Beck et al., 1985, 

Kurpisz and Nowak, 1995) provides a useful tool for resolving surface thermal conditions when surface 

instrumentation is impossible due to the hostile thermal environment. A calibration-based methodology 

devised from a series of observations developed from the frequency domain is presently under 

development at the University of Tennessee, Knoxville (UTK) for estimating surface heat fluxes and 

temperatures based on in-depth temperature measurements (Frankel et al. 2013) in hostile environments. 

Alternatively, a system identification approach (Löhle et al. 2006, 2007, 2008) involving fractional 

derivatives has also been demonstrated in the context of linear analysis for estimating surface heat fluxes 

based on in-depth sensors. The Non-Integer System Identification (NISI) method develops an impulse 

response function based on the calibration run. During this stage, numerous parameters must be estimated 

that serve as coefficients to a finite series expansion involving fractional derivatives of the measured 

temperature and known (net) surface heat flux. Once these coefficients are determined, the impulse 

response function is constructed and used for later estimations of the surface heat flux.   

The UTK calibration approach involves input-output variables and is applicable to both in-depth 

and surface analyses (e.g., null-point calorimetry, Frankel and Keyhani, 2013). That is, the analytical 

transfer function is expressed in terms of calibration data. The resulting Volterra integral equation of the 

first kind (Kress, 1989) is solely composed of discrete data and the unknown variable. Being ill-posed, 

regularization is required for stability. The present numerical implementation is based on a local-future 

information method (Lamm, 2000).  The optimal regularization parameter is estimated based on the study 

of the phase plane (Frankel and Keyhani, 2014b) involving the predicted heat flux (W/cm
2
) and predicted 
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heat flux rate (W/(s-cm
2
)).  Using this phase plane concept and cross-correlation, the optimal 

regularization parameter can be extracted.  

 

2. Concept Development 
For simplicity and mere demonstration purposes, consider the transient, linear heat equation 

governing the geometry displayed in Fig. 1 as 

 

                                                                                                 (1a) 

 

subject to the boundary and initial conditions (T=temperature, x=position, t=time, =thermal diffusivity, 

and w=depth of plate) 
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where q’’=heat flux,  qs’’=heating source, To=initial condition, and k=thermal conductivity.   Unlike the 

forward problem where the boundary conditions are specified, the inverse problem involves resolving the 

surface heat flux, q’’(0,t) using information obtained from an internal measurement, say T(b,t). One can 

derive an input-output framework producing a Volterra integral equation of the first kind (Frankel et al., 

2013). Here, we develop the calibration integral equation based on the measured thermocouple 

temperature (discrete and noisy) at x=b and assume that an adiabatic back surface boundary condition is 

maintained between the calibration and reconstruction tests. During the calibration run, suppose that we 

know the net heat flux, qc’’(0,t) and measure the response temperature Tc(b,t). During the reconstruction 

phase, we must predict qr’’(0,t) based on measured Tr(b,t). The resulting calibration equation for surface 

heat flux becomes 
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Here, the subscript “tc” represents the thermocouple temperature which is not normally the positional 

temperature (Ttc(b,t) T(b,t)) required by the heat equation (see Frankel et al., 2013 for further details). 

Likewise, it is possible to derive the corresponding calibration integral equation for the surface 

temperature as  
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where it is assumed that we can measure the surface temperature during the calibration process. The 

subscript “c” represents calibration while the subscript “r” represents reconstruction. Calibration can be 

performed by carefully designed experimental processes. This case is restrictive owing to the constant 

property assumption and requiring that the back boundary condition remain fixed during the calibration 

and reconstruction tests. Fixed implies that the effective heat transfer coefficient remains constant and the 

environment on the passive side is maintained at the initial condition which could be different between 

test runs. However, these restrictions can be removed (Frankel and Keyhani, 2014c). The calibration 

integral equation method (CIEM) has broad application for heat conduction theory based on 

thermocouples.   
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Frankel and Keyhani (2014a) extended the one-probe formulation to include temperature dependent 

thermophysical properties in such a manner that the temperature varying properties can be accounted 

during a second calibration study. The resulting Volterra integral equation for surface heat flux was 

developed based on property linearization and given as  

 

 

                            (3) 

 

 

Here, the unknown expansion coefficients {ak}, k=0,2,3,...are determined through calibration. More 

recently, Frankel and Bottlaender (2014) proposed a new theory based on an alternative sensor 

arrangement. This arrangement involves placing an ultrasonic transducer/receiver on the backside of the 

sample (x=w in Fig. 1b). In this case, a pulse-echo arrangement is proposed for capturing the time-of-

flight (T.o.F). The T.o.F. measurement can be calibrated to the integral of the temperature over the spatial 

domain based on the temperature dependency of the speed of sound. For linear theory, the calibration 

integral equations for surface heat flux (net) and temperature are 
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respectively, where the T.o.F. function, G(t) is explicitly 
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where =linear expansion coefficient, c(T)=speed of sound, Go=G(To) and To= initial and reference 

condition. The above formulation assumes that the initial condition (heat equation) and reference 

temperature (speed of sound) are identical for all test runs. This restriction can be removed (Frankel and 

Bottlaender, 2014). 

 

  
(a) (b) 

Fig. 1. Schematic of simplified geometry for concept demonstration (a) semi-infinite geometry and (b) finite width 

geometry. 

 

Finally, Chen et al. (2014) expanded the calibration integral equation method to two-

dimensional linear systems where the total heat transfer (W) is sought during the testing program. 

This is a practical issue since often total energy considerations are more important than the local 

heat flux. To reiterate, this approach is unlike conventional methods where property data and probe 

locations are required before forming the prediction. In essence, the proposed calibration 

 

 

'' 2

0 2
0

'' 2

0 2
0

(0, ) ( , ) ( , ) ...

(0, ) ( , ) ( , ) ... , 0

t

r c c oc
u

t

c r r or
u

q u a T b t u a T b t u T du

q u a T b t u a T b t u T du t





      

      







 

207-4 

framework and its accompanying mathematics express the system transfer function in terms of calibration 

data instead of mathematical functions. 

               

3. Results 
Equations (2-4) are highly unstable and small errors in the data will produce highly unreliable 

predictions for 
''(0, )rq t . To stabilize the system, a local future-time method is introduced for estimating 

'' ''

, (0, ) (0, )r rq t q t  where  is the future-time regularization parameter. Alternative methods such as 

Tikhonov’s or singular-value decomposition (SVD) have also been demonstrated. However, the future 

time method retains causality. A new concept (Frankel and Keyhani, 2014b) has been demonstrated for 

extracting the optimal regularization parameter,  through phase-plane analysis and cross-correlation in 

the -spectrum of heat flux and heat flux rate predictions. Extraction of the optimal regularization 

parameter is demonstrated using experimental data collected at the UTK electrical heating sandwich 

(Elkins et al., 2013) and 500 W Class 4 (0.91 micron) laser facilities. The UTK Class 4, 500W (0.91 

micron) facility allows for higher temperatures and heat fluxes than the sandwich facility though 

quantification of the surface (net) heat flux and temperature require additional analysis, configuration 

design and instrumentation. This is on-going research for acquiring high accuracy calibration data. 

Similar results have been produced indicating the merit and accuracy of the approach; and, independence 

of the experimental heating source. 

 

4. Conclusion 
This paper illustrates a highly effective alternative methodology for investigating inverse problems 

based on the calibration integral equation approach. The concept involves expressing the analytic transfer 

function in terms of calibration data. The approach is versatile in terms of geometry, nonlinearities, and 

instrumentation. Additionally, the results obtained by this approach are highly accurate and stable. 

However, significant care must be taken during the calibration tests to insure good predictive results 

during later tests.  

 

References 
Beck, J. V.,  Blackwell, B., and  St. Clair, Jr., C. R., Inverse Heat Conduction, Wiley, NY  (1985). 

Elkins, B., M. Keyhani, and J.I. Frankel (2013). Surface Heat Flux Prediction Through Physics-Based  

Calibration- Part 2: Experimental Verification “AIAA Journal of Thermophysics and Heat Transfer” 

27, 206-216. 

Chen, H.,   Frankel, J.I. and   Keyhani, M., (2014). Two-Dimensional Formulation for Inverse Heat 

Conduction Problems by the Calibration Integral Equation Method, “Int. J. Thermal Sciences”, (in 

review). 

Frankel, J.I.,and   Keyhani, M (2013). Theoretical Development of a New Surface Heat Flux Calibration  

Method for Thin-Film Resistive Temperature Gauges and Co-Axial Thermocouples “Shock Waves” 

23,177-188. 

Frankel, J.I.,  Keyhani, M. and Elkins, B (2013). Surface Heat Flux Prediction Through Physics-Based 

Calibration- Part 1: Theory “AIAA Journal of Thermophysics and Heat Transfer” 27, 189-205. 

Frankel, J.I. and Keyhani, M. (2014a). Nonlinear Inverse Calibration Heat Conduction through Property 

Physics “AIAA J. Thermophysics and Heat Transfer” 28, 203-217. 

Frankel, J.I., Keyhani, M. (2014b). Phase-Plane Analysis and Cross-Correlation for Estimating Optimal 

Regularization Parameters in Inverse Heat Conduction Problems “AIAA J. Thermophysics and Heat 

Transfer” (in press). 

Frankel, J.I. and Keyhani, M. (2014c). Calibration Integral Equation Method for Two-Probe Inverse Heat 

Conduction “AIAA J. Thermophysics and Heat Transfer” (in press). 



 

207-5 

Frankel, J.I. and Bottlaender, D. (2014). Acoustic Interferometry and the Calibration Integral Equation for 

Inverse heat Conduction “AIAA J. Thermophysics and Heat Transfer” (in review). 

Kress, R.,   (1989). Linear Integral Equations, Springer-Verlag, Berlin 

Kurpisz, K.and Nowak, A. J., (1995). Inverse Thermal Problems, Computational Mechanics Publications, 

Southampton, UK. 

Lamm P.K., (2000) ``A Survey of Regularization Methods for First-Kind Volterra Equations'', (in Surveys 

on  Solution Methods for Inverse Problems) Eds.: D. Colton, H. W. Engl, A. Louis, J. R. 

McLaughlin,  W.  Rundell, Springer (Vienna, New York), pp 53-82.   

Löhle, S, Battaglia, J.L., Batsale, J.C., Bourserau, F., Conte, D., Jullien P., Ootegem, B.V., Couzi, J., and 

Lasserre, J.P., (2006). Estimation of High Heat Flux in Supersonic Plasma Flows, “IEEE”. 4, 5366- 

5373. 

Löhle,S., Battaglia, J.L., Batsale, J.C., Enouf, O., Dubard, J., and Filtz, J.F. (2007). Characterization of a 

Heat Flux Sensor using Short Pulse Laser Calibration, “Review of Scientific Instrumentation”, 78. 

Löhle,S., Battaglia, J.L., Jullien, P., Ootegem, B.V., Couzi, J. and Lasserre, J.P. (2008). Improvement of  

High Heat Flux Measurement using a Null Point Calorimeter, “J. Spacecraft and Rocket”, 45, 76-81. 

 


