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Abstract- In this paper, we present a numerical study of the flow characteristics and heat transfer mechanism of a 

non-Newtonian fluid in an annular space between two coaxial rotating cylinders. The Carreau stress-strain relation 

was adopted to model the rheological fluid behaviour. We consider here two cases, the case where the inner cylinder 

is rotated and the outer cylinder is at rest, and the case where the external cylinder is rotated. The horizontal 

endplates are assumed adiabatic. The effects of inner and outer cylinder rotation on heat transfer are examined.  
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1. Introduction 
The laminar flow and the heat transfer of a non-Newtonian fluid between rotating concentric 

annulus are encountered in a large number of industrial processes as the catalytic chemical reactors 

(Cohen 1983), the filtration devices (Holeschovsky 1991), the blood plasmaphosresis devices (Beaudoin 

1989), the plant cell bioreactors (Janes 1987) and the liquid-liquid extractors (Davis 1960).  

The convective heat transfer mechanisms of the non-Newtonian fluids are the subject of 

considerable works and are well understood today. The mixed convection between two concentric 

horizontal cylinders is reported in references (Nieckele 1985, Nguyen 1983 and Naozo 1979). A survey of 

laminar flow of non-Newtonian fluids in a rotating concentric annulus has been reported by Batra and 

Eissa (1994). Flow of a Casson and Robertson-Stiff fluids between two rotating cylinder has been 

investigated by Batra (1992) and Eissa (1999). Kouitat et al. (1990) investigated theoretically and 

numerically the laminar Couette at the start-up stage of the fluid motion within a coaxial cylinder 

viscosimeter. For a Carreau model, Khellaf and Lauriat (2000) studied numerically the heat transfer 

between two rotating concentric vertical cylinders. A great deal of theoretical and numerical works 

dealing with flow and associated heat transfer characteristics of natural and mixed convection in annuli 

between two isothermal concentric cylinders are reported in the cited literature  (Khellaf 2000, Grecov 

2005, Baloch 2003, Gandjalikhan 2003, Nouri 1997 and Gwynllyw 1996). 

In this study, we present a numerical study of the flow characteristics and heat transfer mechanism of 

a non-Newtonian fluid in an annular space between two coaxial rotating cylinders. The Carreau stress-

strain relation was adopted to model the rheological fluid behavior. In comparaison with the Newtonian 

case, this model invoves four additional parameters, namely the zero-and infinite-shear rate viscosities 

(  and   , respectively), the relaxation time of the fluid, , which describes the transition to a constant 

viscosity in the limit of zero shear rate, and the index of structure, n, which is a measure of the degree of a 

non-Newtonian behavior. We consider here two cases, the case where the inner cylinder is rotated and the 
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outer cylinder is at rest, and the case where the external cylinder is rotated. The effects of inner and outer 

cylinder rotation on heat transfer are examined. A computational code applied to the fluid mechanics and 

the heat transfer by using the finite elements method is developed. This code is validated by comparison 

with results reported in the literature. This computational code takes into account the non-Newtonian 

effects.  
 

2. Problem Formulation 
The geometry under investigation is shown in Fig. 1. We consider two coaxial cylinders with a 

finite length H. The inner cylinder, of radius ir , is maintained at a hot uniform temperature hT . The 

outer cylinder of radius re is at a cold temperature cT .     

 
Fig.1. Geometry of the problem. 

    

The flow is assumed to be laminar, incompressible and axisymmetric. Non- Newtonian effects are 

considered for fluids obeying the Carreau constitutive relationship 
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where 0 is the viscosity at low shear rate,  is the viscosity at high shear rate,   is the time 

constant, n is the power law index, and 
.

  is the shear rate. It is given by: 
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In the following, it is assumed that the parameters of this constitutive equation do not vary with 

temperature. For many concentrated polymer solutions and melts, it can be assumed that  << 0 (Bird 

1987). So,   is neglected here.   represents the dimensionless apparent viscosity. The fluid is 

Newtonian for n =1, and the shear thinning behaviour becomes more significant where n  becoming 

smaller. 
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The dimensionless form of the governing equations can be obtained by use of dimensionless 

variables defined as: 
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Variables u, v and w are the velocity components in the z, r direction and azimutal velocity. T is the 

temperature. The dimensionless deformation rate is the ratio i

e i

r

r r




. 

In dimensionless form, the relationship (1) is written as follow: 
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where the flow index n and the Weissenberg number eW , describe the rheological property of the 

fluid. 

On the basis of the dimensionless variables defined in Eq.(3), the non-dimensional form of the 

conservation of mass, momentum and energy equations are: 
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The dimensionless boundary conditions in this case of this geometry are: 

W = 1,   U = V = 0,    1     at the inner cylinder 

W = 0,   U = V = 0,    2     at the outer cylinder 

W = U = V = 0   and  0
Z





  at the horizontal endwalls. 
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The problem is characterized by the following parameters of similarity; Prandtl number
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3. Numerical Resolution 
When simulating an incompressible fluid flow, we demand that divergence- free discrete velocities 

be attainable. Attempts to ensure that the fluid flow is everywhere and always incompressible have 

dominated the subject of computational fluid dynamics. We analyse equations (5-7) by using a mixed 

formulation rather than by using a segregated approach so that the mass and momentum conservations 

can be simultaneously coupled. The pressure in the incompressible Navier-Stokes equations serves as a 

Lagrangian multiplier. As a result, accurate predicted discrete solenoidal velocities may accompany a 

non-smooth pressure. Legitimate choice of finite element trial spaces for primitive variables is thus of 

importance because the mixed finite element method is subject to the LBB (Ladyzhenskaya- Babuska - 

Brezzi) stability condition. To retain a sufficiently smooth solution for the investigated elliptic system (5-

7), we take an element free of the LBB stability constraint into consideration. By substituting the well-

paired bilinear interpolation function for the pressure and the biquadratic interpolation function for the 

velocities into the weighted residual statement of (5-7), we can derive the following matrix equations 

along with bilinear test function for the mass conservation equation: 
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The matrixes (C) and (K) are organized in the following way: 
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where 
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Again the finite-element technique and Galerkin’s principle can be used for solving the rotating 

velocity and the energy equation. The following matrix equation (19 and 23) can be obtained by adopting 

the same approach as outlinned previously: 
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and 

Ni is the shape functions of the 9-node quadrilateral element and Mi is shape functions of the 4-

node quadrilateral element. 
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Calculation of the stream function and Nusselt number: The quantities of interest in the present 

problem are also the stream function and the Nusselt number. These can be calculated a posteriori once 

the solution for the velocity and temperature fields has been obtained.  

The distribution of the stream function   can be obtained via the velocity field by solving 

separately the Poisson equation subject to the boundary condition 0  on all walls: 
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The mean Nusselt number is defined as the ratio of heat flux crossed through the total cylindrical 

surface of radius r to the conduction heat flux:  
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Although a Newton-Raphson iterative scheme would be recommended for the solution of nonlinear 

system of equations, here we have used a direct substitution scheme (Picard method), sometimes with 

underrelaxation to accelerate convergence. This avoids calculating the Jacobian which can be time 

consuming, and it also enjoys a wider convergence range. The solution process starts from the Newtonian 

field (n=1), which is used to obtain first approximation.  

 

4. Results and Discussion 
Calculations were performed with two grids, one having 400 elements, 1681 nodes, and 3803 

unknown degrees of freedom and another denser having 900 elements, 3721 nodes, and 8403 degrees of 

freedom. The results were virtually identical and thus mesh independent.   

The convergence criterion used here is that the maximum relative change in dependant variables 

between successive Newton iterations is less than
510
. All the calculations have been conducted at We = 

10 and for a fluid with Pr=5, corresponding to the dilute solutions of a polymer in water, the geometry of 

the annulus is fixed at AR=1 and K=2. 

Furthermore, in order to validate the numerical code used for the present study, the steady-state 

solutions obtained as time-asymptotic solutions for an untilted square cavity with differentially heated 

sidewalls and adiabatic top and bottom walls, have been compared with the benchmark results by De 

Vahl Davis (1983). In particular, the average Nusselt numbers obtained at Rayleigh numbers in the range 

between 
410 and 

510 , and the maximum horizontal and vertical velocity components on the vertical and 

horizontal midplanes of the enclosure, have been found to be within 1%-3% of the benchmark data. 

In the Figs. 2 and 3 we present the variation of the mean Nusselt number as a function of the flow 

index for two values of Reynolds number (Re=100 and Re=200) at Gr=2000. 

In the mixed convection (Re=100 or Re=200, Gr=2000), the heat transfer is more important on the 

case where the inner cylinder is rotated to compare with the case where the external cylinder is rotated. 
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Fig. 2. Average Nusselt number as a function of the flow index at Re=100 and Re=200 for two cases. 

(a) inner cylinder is rotated 

(b) external cylinder is rotated 
 

The fig. 4 shows the streamlines for the mixed convection flows. In such case of regime, the 

increase of the flow index leads to the apparence of a second cell flow occupying the high internal zone of 

the annular space in the case (a). But this second cell flow occupies the high external zone of the annular 

space in the case (b). The intensity of this cell flow grows with the flow index for the two cases. 

 

 
(1)  n=0.6                       (2)  n=0.8                 (3)  n =1.0 

Case (a): inner cylinder is rotated 

 
(1)  n=0.6                          (2)  n=0.8                    (3)  n =1.0 

Case (b): external cylinder is rotated. 

Fig. 4. Streamlines at Gr=2000 

Fig. 5 displays the streamlines and isotherms for natural convection flows. We can see on Fig. 7(a) 

and (b), that the recirculating flow is more intense and the thermal gradients are more important on the 

inner cylinder for a fluid with a flow index lower than unity. 
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(1)     n=1.0  et  Re=0 

 

(2)     n=0.8  et  Re=0 

Case (a): Ra=200 

 
(1)      n=1.0  et  Re=0 

 
(2)      n=0.8  et   Re=0 

Case (b): Ra=2000 

 
Fig. 5. Streamlines and isotherms. 

5. Conclusion 
A numerical study of a fluid flow and a heat transfer is presented for non-Newtonian fluids 

confined in a differentially heated annular cylindrical space with rotating inner cylinder or with rotating 

external cylinder. The shifted Carreau constitutive was adopted to model the rhological fluid 

caracteridtics. Two flow regimes are considered according to the speed of rotation of the inner cylinder: 

mixed, and natural convections. The results show that the non-Newtonian effects are important on the 

structure of the flow and on the heat transfer. The effects of inner and outer cylinder rotation on heat 

transfer are examined. A parametric study of the effects of the flow index is presented to describe the 

flow behaviour. 
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