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Abstract -The steady two-dimensional stagnation point flow of a second-grade fluid with slip in the presence 

of a transverse magnetic field is examined. The fluid impinges on the wall orthogonally. Numerical solutions 

are obtained using a quasi-linearization technique. The effects of the viscoelastic parameter, the magnetic field 

and the slip condition on the flow are examined. 
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1. Introduction 
      Magnetohydrodymanic (MHD) stagnation point flows are relevant to many engineering 

applications such as petroleum engineering, chemical engineering, MHD pumps, heat exchangers and 

metallurgy industry. Examples of MHD flows in the metallurgy industry include the cooling of 

continuous strips and filaments drawn through a quiescent fluid and the purification of molten metals 

from non-metallic inclusions. The Hiemenz flow of a viscous fluid in the presence of a magnetic field was 

examined by Ariel (1994). Kumari and Nath (1999) studied the flow and heat transfer in a stagnation-

point flow of a viscous fluid over a stretching surface in the presence of a magnetic field. Attia (2000) 

investigated the steady flow of a non-Newtonian fluid at a stagnation point with heat transfer in an 

external uniform magnetic field. 

  One class of flows which has been studied extensively in fluid mechanics is the stagnation-point 

flows. Hiemenz (1911) derived an exact solution of the steady flow of a Newtonian fluid impinging 

orthogonally on an infinite flat plate. Stuart (1959), Tamada (1979) and Dorrepaal (1986) independently 

investigated the solutions of a stagnation point flow when the fluid impinges obliquely on the plate. Beard 

and Walters (1964) used boundary-layer equations to study two-dimensional flow near a stagnation-point 

of a viscoelastic fluid. Rajagopal et al. (1983) have studied the Falkner-Skan flows of an incompressible 

second grade fluid. Dorrepaal et al. (1992) investigated the behaviour of a viscoelastic fluid impinging on 

a flat rigid wall at an arbitrary angle of incidence. Labropulu et al. (1993)studied the oblique flow of a 

second grade fluid impinging on a porous wall with suction or blowing. 

    Magnetohydrodymanic (MHD) stagnation point flows are relevant to many engineering 

applications such as petroleum engineering, chemical engineering, MHD pumps, heat exchangers and 

metallurgy industry. Examples of MHD flows in the metallurgy industry include the cooling of 

continuous strips and filaments drawn through a quiescent fluid and the purification of molten metals 

from non-metallic inclusions. The Hiemenz flow of a viscous fluid in the presence of a magnetic field was 

examined by Ariel [14]. Kumari and Nath (1999) studied the flow and heat transfer in a stagnation-point 

flow of a viscous fluid over a stretching surface in the presence of a magnetic field. Attia [16] 

investigated the steady flow of a non-Newtonian fluid at a stagnation point with heat transfer in an 

external uniform magnetic field. 

    Another interesting stagnation-point flow is one with wall slip which was recently considered in a 

paper by Wang (2003). Wall slip can occur if the working fluid contains concentrated suspensions 

(Soltani and Yilmazer (1998)). Also, this problem arises in some applications where a thin film of light 
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oil is attached to the plate or when the plate is coated with special coatings such as a thick monolayer of 

hydrophobic octadecylthichlorosilane (see Derek et al. (2002)). 

    When the molecular mean free path length of the fluid is comparable to the system's characteristic 

length, then rarefaction effects must be considered. The Knudsen number   , defined as the ratio of the 

molecular mean free path to the characteristic length of the system, is the parameter used to classify fluids 

that deviate from continuum behaviour. If      , it is free molecular flow, if           it is 

transition flow, if             it is slip flow, and if         it is the viscous flow (see Wang 

(2003), Kogan (1969)). Flows in the slip-flow region have been modeled using the Navier-Stokes 

equations and the traditional non-slip condition is replaced by the slip condition 

 

     
   

  
                                                                                                                                                  (1) 

 

where    is the tangential velocity component,   is normal to the plate, and    is a coefficient close to 

2(mean free path)/√  (see Sharipov and Seleznev (1998)]). This condition was first proposed by Navier 

(1827) nearly two hundred years ago. 

        In the present work, we follow Wang (2003) and investigate the behaviour of the non-

Newtonian second-grade fluid impinging on a rigid wall with slip in the presence of a transverse magnetic 

field. The fluid impinges on the wall orthogonally. In particular, we study the effects of the slip condition, 

the magnetic field and the effects of the viscoelasticity of the fluid on the stagnation-point. 

    

2. Flow Equations 
The steady two dimensional flow of a viscous incompressible second grade fluid in the presence of 

transverse magnetic field is governed by the following equations  in non-dimensional form 
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where    (   )    (   ) are the velocity components,    (   ) is the pressure,   
 

 ⁄  is the 

kinematic viscosity where   is the constant fluid density and   is the constant coefficient of viscosity, and 

      are the normal stress moduli,    
   

  
 is the Weissenberg number,   

   

  
 is the Hartmann’s 

number,   is the electrical conductivity and    is the magnetic field,   
   

  
 and   has the units of 

inverse time.. It is assumed that the magnetic field  ⃗   is perpendicular to the velocity field  ⃗  and 

     , so it is possible to neglect the effect of the induced magnetic field. The star on a variable 
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indicates its dimensional form. Dunn and Fosdick (1974) and Dunn and Rajagopal (1995) have shown 

that if the second-grade fluid is to undergo motions which are compatible with Clausius-Duhem 

inequality and the assumption that the free energy density of the fluid be locally at rest, then the material 

constants must satisfy the following restrictions: 

 

  1 1 20, 0, 0a  

 

      Continuity equation (2) implies the existence of a stream-function  (   )  such that 
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Substitution of (5) in equations (3) and (4) and elimination of pressure from the resulting equations using 

        yields 
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Having obtained a solution of equation (6), the velocity components are given by (5) and the pressure can 

be found by integrating equations (3) and (4). 

 

The shear stress component     is given by  
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3. Solutions and Discussion 
We assume that the infinite plate is at     and that the fluid occupies the entire upper half plane 

   . Furthermore, we assume that the stream-function far from the wall is given by      (see 

Hiemenz [6]). Thus, the non-dimensional boundary conditions are given by  

 
  

  
                       (   )                                                                                                          (8) 

 
The slip condition in equation (1) becomes 

  

  
  

   

                                                                                                                                                                    (9) 

 

where     √    is a parameter representing the slip to viscous effects. 

Following Wang (2003), we assume that   
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Substituting (10) in equations (6) and boundary conditions (8) and (9), we obtain the following ordinary 

differential equations after one integration 
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where prime denotes differentiation with respect to y . 

System (11) with     and      has been solved for various values of   by Wang (2003). If 

     , system (11) has been solved by Garg and Rajagopal (1990) and Ariel (2002) for various 

values of   .  

Using the quasi-linearization technique described by Garg and Rajagopal (1990), we find that 

  ( )          when         . Numerical values of    ( )  for various values of      and 

  are shown in Tables 1 and 2. These values are in good agreement with the values obtained by Wang 

(2003) when        and the values obtained by Garg and Rajagopal (1990) and Ariel (2002) when 

     . Figure 1 depicts the profiles of    for       and various values of   . The profiles of 

   for            and various values of   are shown in Figure 2. The profiles of    for        
    and various values of   are shown in Figure 3. 

 

4. Conclusions 
The steady two-dimensional stagnation-point flow of a second grade fluid with slip in the presence 

of a transverse magnetic field is examined. The fluid impinges on the wall orthogonally. The quasi-

linearization technique is used and numerical results are obtained for various values of the Weissenberg 

number   , the Hartmann's number   and the slip parameter  . It can be observed that as the elasticity of 

the fluid increases, the values of   ( ) near the wall are decreasing and as the slip parameter   is increasing 

the values of   ( ) near the wall are also increasing. Furthermore, as the magnetic parameter   is 

increasing, the values of   ( ) near the wall are increasing. From Tables 1 and 2, we can see that    ( ) 

increases with the magnetic parameter  . The reason for this behaviour is that the magnetic field  ⃗  induces 

a force along the surface which supports the motion. As a result, the velocity along the surface is increased 

everywhere with increasing Hartmann's number.  
 

Table 1. Numerical values of (0)F   for various values of    and   when    . 

 

 

 
                      

    1.23259 1.05818 0.75276 0.41288 

      0.76428 0.68939 0.53933 0.33566 

    0.37589 0.35671 0.31125 0.22981 

    0.09404 0.09280 0.08939 0.08110 

     1.23259 1.05818 0.75276 0.41288 

 
Table 2. Numerical values of (0)F   for various values of    and   when       . 

 

 

 
                      

    1.93895 1.69217 1.24230 0.70921 

      0.92516 0.85191 0.69735 0.46833 

    0.67839 0.63683 0.54329 0.38938 

    0.18309 0.17974 0.17080 0.15033 

     0.09560 0.09467 0.09210 0.08568 
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    Fig. 1. Variation of   ( ) for         and various values of    . 

 

     
Fig. 2. Variation of   ( ) for            and various values of   . 

 

 
Fig. 3. Variation of   ( ) for            and various values of   . 
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