Proceedings of the 5th International Conference on Advances in Energy Research and Applications (ICAERA 2024) Lisbon, Portugal-Novemeber 21 - 23, 2024 Paper No. 124 DOI: 10.11159/icaera24.124

Impact of BiBO₃, NaF and BiF₃ Doping on the Thermoelectric Properties of Bi₂Ca₂Co₂O_y Ceramics

Iamze Kvartskhava¹, Nikoloz Margiani¹, Vakhtang Zhghamadze¹, Masatoshi Takeda², Giorgi Mumladze¹, Giorgi Kakhniashvili¹, Astghik Kuzanyan³

¹Georgian Technical University Z. Anjaparidze str., 1st Ln., N6, 0186, Tbilisi, Georgia iakvartskhava@gmail.com, n.margiani@gtu.ge, vakhtang66@gmail.com, g.mumladze@gtu.ge, georgekakhniashvili13081955@gmail.com ²Nagaoka University of Technology 1603-1 Kamitomioka, Nagaoka 940-2188, Nagaoka, Japan takeda@mech.nagaokaut.ac.jp ³The Institute for Physical Research of National Academy of Sciences of Armenia Ashtarak-2, 0204, Ashtarak, Armenia astghik.kuzanyan@gmail.com

Extended Abstract

Due to the increasing global energy demand and climate change issues, the importance of environmentally friendly renewable energy technologies is growing. Many studies in this field focus on thermoelectric materials that can directly convert waste heat into electric power. Doping via sol-gel chemistry, leading to exceptionally high chemical homogeneity, is a promising approach for enhancing the heat-to-electricity conversion efficiency of thermoelectric materials. In this work, for the first time, we studied the impact of (i) partial substitution of bismuth oxide (Bi_2O_3) by bismuth borate $(BiBO_3)$, (ii) dual-substitution of Bi₂O₃ by BiBO₃ and sodium fluoride (NaF), and (iii) dual-substitution of Bi₂O₃ by BiBO₃ and bismuth (III) fluoride (BiF₃) on the thermoelectric characteristics of $Bi_2Ca_2Co_2O_y$ layered cobaltite. Samples with a nominal composition of Bi₂Ca₂Co₂O_y (reference), Bi_{1.9925}Ca₂Co₂(BiBO₃)_{0.0075}O_y, Bi_{1.8925}Ca₂Co₂(NaF)_{0.10}(BiBO₃)_{0.0075}O_y, and Bi_{1.8925}Ca₂Co₂(BiF₃)_{0.10}(BiBO₃)_{0.0075}O_y, were prepared using the sol-gel method with citric acid and ethylene glycol as chelating agents. The phase composition of prepared materials was examined using X-ray diffraction analysis. Grain size distribution, surface morphology, and elemental compositions were studied by a scanning electron microscope (SEM) coupled with an energy-dispersive X-ray spectrometer (EDS). A homemade setup was used to determine the temperature dependence of the Seebeck coefficient and electrical resistivity in the temperature range of 293 K to 973 K. Thermal conductivity was measured from 293 K to 573 K. Finally, values of power factor ($PF = S^2/\rho$) and figure of merit (ZT = $S^2T/\rho k$) were calculated with S, ρ , T, and k representing Seebeck coefficient, electrical resistivity, absolute temperature, and thermal conductivity, respectively. The XRD analysis confirms that all the samples consist of a nearly pure $Bi_2Ca_2Co_2O_y$ phase. SEM/EDS analysis reveals that prepared materials consist of plate-like grains with a sizes of around 6 µm, which constitute the Bi₂Ca₂Co₂O_y phase. Additionally, there are smaller grains with dimensions of $1\div 2 \mu m$, mainly containing a cobalt compound. When compared to the reference and BiBO₃-doped samples, dual NaF/BiBO₃ and BiF₃/BiBO₃ doping significantly reduces the concentration of smaller grains. Dual NaF/BiBO₃ doping leads to a sharp decrease in ρ due to the partial substitution of NaF for Bi₂O₃, which increases the concentration of charge carriers (holes). At the same time, partial substitution of BiF₃ for Bi₂O₃ led to a decrease in hole concentration and, hence, an increase in ρ . Seebeck coefficients were positive for all the samples, indicating p-type conductivity. The value of S for the NaF/BiBO₃ co-doped composition at 973 K is 4–6 % lower than that of the reference, BiBO₃-doped, and BiF₃/BiBO₃ co-doped samples. Although the NaF/BiBO₃ codoped sample possesses a slightly lower Seebeck coefficient and higher thermal conductivity than the ones studied, the reduced resistivity has a greater impact on the thermoelectric performance, leading to an improved power factor and figure of merit. The maximum PF and ZT values achieved in the NaF/BiBO₃ co-doped composition are 18% and 13% higher, respectively, than the reference Bi₂Ca₂Co₂O_y.

Acknowledgement:

This work was supported by the International Science and Technology Center (ISTC) [Project # GE-2776/Enhancing the thermoelectric conversion performance of cobalt-based oxide materials through doping and microstructure modulation].