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Abstract - Predicting multi-protein complexes is becoming a central problem in system biology as it could be a 

way to reveal the biochemical functions of a protein. Most of the recently developed methods focus on topological 

information to detect multi-protein complexes. In this paper, biological and topological features characterizing 

protein complexes are extracted and used in conjunction with muti-class support vector machines to detect multi-

protein complexes from the protein-protein interaction network. The proposed method was able to detect 76 

complexes out of 81 reference complexes with high precision. In comparison with state-of-the-art methods, the 

evaluation results indicate that the applied method has great potential in detecting multi-protein complexes. 
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1. Introduction 
The use of high-throughput screening methods has contributed significantly to the growing amount 

of Protein-Protein Interaction (PPI) data. It is desirable to use this wealth of data to detect multi-protein 

complexes. A multi-protein complex is a group of two or more associated proteins formed by interactions 

that are stable over time. It was shown by Vanunu et al. (2010) that a protein and its high-confidence 

interactors are believed to form a putative multi-protein complex that is related to diseases such as 

prostate cancer, alzheimer's disease and type 2 diabetes. Therefore, several methods were developed to 

detect the multi-protein complexes.  

Earlier methods include Markov clustering (MCL) (Dongen, 2000), restricted neighborhood search 

clustering (RNSC) (Andrew et al., 2004), CFinder [4] molecular complex detection (MCODE) algorithm 

(Bader and Christopher, 2003). Recent methods include Maximal Cliques (CMC) (Guimei et al., 2009) 

for discovering multi-protein complexes in weighted PPI networks. CMC uses an iterative scoring 

method called AdjstCD to assign weights to protein pairs. The AdjstCD weight in this method indicates 

the reliability of the interaction between protein pairs. Nepusz and Paccanaro developed ClusterONE 

(2012) which initiate from a single seed vertex before a greedy growth procedure begins to add or remove 

vertices in order to find clusters of proteins in the PPI with high cohesiveness. Zaki et al. developed 

ProRank (2012) which rank the importance of each protein in the network based on the interaction 

structure and the evolutionarily relationships between proteins. The ranking process in this case proved 

valuable for detecting multi-protein complexes. A recent method called PEWCC (Zaki et al., 2013) which 

based on the concept of weighted clustering coefficient has shown great potential in detecting multi-

protein complexes.  

Most of the above mentioned methods mainly focus on topological information and fail to consider 

the information from protein primary sequence which is of considerable importance for multi-protein 

complex detection. It was mentioned by the authors of ProRank (Zaki et al., 2012) that the accuracy 

improvement achieved by incorporating sequence similarity information to their algorithm is not 

significant. Therefore, to achieve a breakthrough, we need a deeper understanding of the characteristics of 

the proteins within these complexes. In this paper, we propose a supervising learning method for multi-
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protein complex detection by integrating network topological features and biological process information 

to be used in conjunction with multi-class support vector machines. 

 

2. Method 
Our method which we call it SVM-Net mainly consists of four major steps, feature extraction, 

preparing the data (pre-processing), mining patterns (classification) and post-processing. These steps are 

described in the proceeding sections and are illustrated in Figure 1. 

 

 
Fig. 1. Overview of the proposed SVM-Net method. 

 

2. 1. Features Extraction 
The formation of multi-protein complexes might be regulated at different levels, including 

transcriptional regulation. In prokaryotes for instance a significant proportion of the genes that are co-

regulated at the transcriptional level usually code for proteins that physically interact (Simonis et al., 

2004). This proportion is even higher for gene groups whose co-regulation is conserved in different 

genomes (Huynen et al., 2000). Therefore, two sets of valuable features can be extracted. The first is the 

out-degree and in-degree related to transcriptional regulation interaction. This feature represents the 

number of outgoing or incoming links to the gene   corresponding to a protein. Links in this case are 

represented in terms of transcriptional regulation interactions. The second is the betweenness centrality 

with respect to transcriptional regulation interactions. If      
 denotes the number of shortest paths 

between two genes    and    then the value      
    can be defined as the number of shortest paths 

between    and    passing through  . The paths in this case are represented in terms of transcriptional 

regulation interactions. Similarly, betweenness centrality with respect to the physical interaction can also 

be calculated. 
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The graph abstraction of protein interactions is crucial for the understanding of the global behaviour 

of the network and therefore integrating topological properties, cellular components, and biological 

processes retains valuable knowledge of the characteristics of the multi-protein complexes. Hence, two 

informative set of features can be extracted which include the cellular components (cytoplasm, 

endoplasmic reticulum, mitochondrion, nucleus or other localization) and biological processes (cell cycle, 

metabolic process, signal transduction, transcription, transport or other process). The above four feature 

sets were obtained from Acencio and Lemke (2009). 

PPI is often represented as a graph          , where   is a set of nodes (proteins) and   is a set of 

edges (interactions) connecting pairs of nodes. This representation allows us to study the network using 

the concepts and principles of graph theory. Therefore, two sets of features such as betweenness centrality 

related to integrated functional, degree related to integrated functional, maximum neighborhood 

component and density of maximum neighborhood component are considered. In case of the betweenness 

centrality and the degree, the values are represented in terms of integrated functional with respect to 

physical interaction (PI) and genomic context (GC) network interactions. Following Chiou-Yi Hor et al. 

(2013), the network information are collected from Hu et al. (2009) and the features are calculated using 

iGraph software (Csárdi and Nepusz, 2006). Maximum neighborhood component (MNC) and density of 

maximum neighborhood component (DMNC) properties were proposed by Lin et al. (2008) and Chin 

(2010). Other topological feature such as Clique level was also calculated.  The clique level (Hwang et 

al., 2009) of protein   is defined as the maximal clique containing  . Here, only cliques with sizes between 

3 and 10 proteins were taken into consideration. 

Sequence primary structural features such as protein length, cysteine count, amino acid occurrence, 

average cysteine position, average distance of every two cysteines, cysteine odd-even index, average 

hydrophobicity, average hydrophobicity around cysteine, cysteine position distribution and average 

PSSM of amino acid were also used. All the above 10 protein features were taken from Lin et al. (2010) 

and were used to detect essential proteins from PPI (Chiou-Yi et al., 2013). 

Evolutionary related feature namely the phyletic retention was also considered. In this case the 

phyletic retention of protein   is the number of organisms in which an ortholog is present. The ortholog of 

each protein was obtained from Hwang et al. (2009). The Number of paralagous genes which defined as 

the number of genes that are present in the same genome and the open reading frame (ORF) length were 

also considered. 

 

2. 2. Preparing and Pre-processing of the Data 
The data extracted are often very sparse and therefore, standardization of the dataset is a common 

requirement for many machine learning estimators as they might perform badly if an individual feature is 

not normally distributed. In this case all features should be normalized and scaled between 0 and 1.  

To insure that all our attributes are meaningful, a feature selection is used to assess the relevance of 

each attribute. We focus on using a feature selection method based on filtering. Filtering algorithms use 

independent search and evaluation method to determine the relevance of features variables to the data 

mining task. Therefore we employed the “GainRatioAttributeEval” method available in Weka (Mark et 

al., 2009) to evaluate the worth of an attribute by measuring the gain ratio with respect to the class. The 

distribution of proteins across complexes is obviously imbalance and therefore, a resampling function is 

used.   

 

2. 3. Mining Patterns (Classification) 
Once the data is pre-processed a sensible data mining task must be designed to comply with the 

objectives of predicting proteins in the multi-protein complexes. This problem can be handled by utilizing 

a multi-classification technique and therefore, Support Vector Machines (SVM) (Vapnik, 1998; 

Cristianini and Shawe-Taylor, 2000) was selected to be used. The basic idea of the SVM algorithm is to 

map the given training set into a possibly high-dimensional feature space and attempting to locate in that 

space a hyperplane that maximizes the distance separating the positive from the rest of the examples. 
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The SVM algorithm addresses the general problem of machine learning to discriminate between 

positive and negative examples of a given class of n-dimensional vectors. In order to discriminate 

between proteins across complexes, the SVM learns a classification function from a set of positive 

examples  + and set of negative examples  -. The classification function takes the form:  

 

     ∑                  ∑                        (1) 

 

where the non-negative weights    are computed during training by maximizing a quadratic objective 

function and the function        is called a kernel function. Any accident case   is then predicted to be 

positive if the function      is positive. More details about how the weights    are computed and the 

theory of SVM can be found in (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000). In the case of 

multiclass SVM labels which are drawn from a finite set of several elements are assigned to the instances. 

The dominant approach for doing so is to reduce the single multiclass problem into multiple binary 

classification problems. 

 

2. 4. Post-processing Patterns 
Following the classification step it is important to evaluate the patterns detected by the SVM. Several 

evaluation measures are used in this study such as Precision (
  

     
 , Recall (

  

     
 , F1 measure 

(  
                

                
  and Accuracy  

     

   
 , where   ,   ,   ,    and     are defined as: 

 

  : related protein classified as "related". 

  : unrelated protein classified as "related". 

  : related protein classified as "unrelated". 

  : unrelated protein classified as "unrelated". 

   : total number of proteins in the dataset. 

 

Once all proteins are classified in groups (complexes) with reasonable classification accuracy it is 

important to assess the quality of the detected complexes. To evaluate the accuracy of the detected 

complexes, we used the Jaccard index which is defined as follows: 

 

           
        

        
           (2) 

 

where    and    are the set of proteins in complex    and  , respectively. The complex   is defined 

to match the complex   if               where                  (as most of the available methods 

were evaluated).  

To estimate the cumulative quality of the detection, we follow Zaki et al. [8] and compare the number 

of matching complexes with the number of reference complexes using recall (    
   

  
), precision 

(    
   

  
) and   -measure (     

       

       
 , where     is a number of matching reference 

complexes,      is a number of detected reference complexes,    is a number of reference complexes 

and     is the number of detected complexes. 

To assess the accuracy estimation of the proteins predicted in the reference and detected complexes 

three further characteristics are used: 

 

Recall:      
∑     

   
   

∑     
  
   

,  where                                     (3) 

Precision:     
∑     
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,  where                                    (4) 
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  -measure: (     
       

       
           (5) 

 

Calculations were made of precision and recall at complex and complex protein levels. Furthermore, 

we evaluated the performance of our method using the maximum matching ratio (MMR) which reflects 

the maximal one-to-one mapping between detected and reference complexes. The algorithm to calculate 

the MMR is available from (Nepusz and Paccanaro, 2012). 

       

3. Experimental Work and Results 
The effectiveness of the proposed method is evaluated using a PPI dataset which was prepared by 

Gavin et al. (2006). The dataset contains 1430 proteins, 6531 interactions, with network density of 0.006, 

and average number of interactions equal to 9.134. The network contains no isolated nodes and a diameter 

of 13. The reference data of complexes was created from MIPS (Mewes et al., 2002). In the case of MIPS, 

only complexes that were manually annotated from DIP interaction data are considered. Following Leung 

et al. (2009), complexes of sizes less than 5 proteins are excluded and therefore, 81 complexes were 

considered.  

The experimental work started by the exploration and the preparation of the PPI dataset. A total of 61 

features were extracted (as explained in section 2). The features were analysed and the 

“GainRatioAttributeEval” method reveals that features related to organelle such as vacuole, 

mitochondrion and endoplasmic reticulum are strongly linked with the detection of multi-protein 

complexes. Features related to amino acid occurrence and in particular “GLN”, “GLY” and “LYS” are 

also proved valuable. Similarly, there is no evidence suggesting that organelle such as peroxisomes and 

the bud neck (a constriction between the mother and the daughter cell (bud) in an organism that 

reproduces by budding) have no strong links to the characterization of multi-protein complexes. 

One other observation inferred from the data exploration as shown in Figure 2 that the distribution of 

proteins across multi-protein complexes is unbalanced. From data mining point of view this data requires 

balancing and therefore, resampling method with random seed equal to 1 was used. The resampling in this 

case produces a random subsample of a dataset using replacement. 

 

 
Fig. 2. The distribution of proteins across complexes. 

 
Once the pre-processing step is completed and the dataset is prepared, multiclass SVM was used.  

The Library for Support Vector Machines (LibSVM) implemented by Rong-En and Chih-Jen Lin (2005) 

was used. One of the significant parameters needed to tune the SVM is the choice of the kernel function. 

The kernel function allows SVM to locate the hyperplane in high dimensional space that effectively 

separate the training data (Zaki et al. 2011). The Gaussian Radial Basis function (RBF) was used as it 

allows pockets of data to be classified which is more powerful way than just using a linear dot product. 
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To know how accurately our predictive model will perform in practice, 10-fold cross validation was 

used. The overall classification accuracy of assigning proteins to their corresponding complex is 71.05. 

The classification Precision, Recall and F1 measure are 0.72, 0.71 and 0.71, respectively. The list of the 

detected complexes was then compared to the reference complex dataset (both available at 

http://faculty.uaeu.ac.ae/nzaki/Research.htm). The proposed method was able to impressively detect 76 

complexes out of the 81 reference complexes with the value of       . Furthermore, we compared the 

performance of SVM-Net to other state-of-the-art methods for detecting multi-protein complexes. The 

comparison is shown in Table 1. More than one quality measures were used to assess the performance of 

each algorithm. The parameters of the methods listed in Table 1 were optimized to achieve the best 

accuracy possible. 

 
Table 1. Performance comparison of SVM-Net to ClusterONE, CMC, MCode, PEWCC and ProRank. 

 

Evaluation  

Measures 

ClusterONE 

 

CMC 

 

MCode 

 

PEWCC 

 

ProRank 

 

SVM-Net 

    0.803 0.753 0.568 0.753 0.79 0.938 

    0.313 0.324 0.523 0.744 0.557 0.938 

   0.45 0.453 0.544 0.748 0.653 0.938 

    0.694 0.558 0.355 0.604 0.556 0.541 

    0.42 0.397 0.485 0.656 0.618 0.967 

   0.523 0.464 0.41 0.629 0.585 0.694 

MMR 0.613 0.549 0.404 0.54 0.571 0.587 

Detected Cmplx 243 213 88 652 115 NA 

 
 

As shown in Fig. 3, SVM-Net is able to detect more matched complexes (76 matching complexes, 

α=30) than other state-of-the-art methods with higher recall and precision. 

 

 
Fig. 3.  The number of matched complexes detected by SVM-Net in comparison to ClusterONE, CMC, MCode, 

PEWCC and ProRank. 

 

4. Conclusion 
Most of currently available methods for detecting multi-protein complexes mainly focus on 

topological information and fail to consider the information from protein primary structure. Protein 

sequence information is of considerable importance for protein complex detection. Based on this 

observation, we propose a method called SVM-Net to discover multi-protein complexes from yeast PPI 

network. SVM-Net extracts valuable features from the protein primary structure (amino acid background 

frequency) and the topology of the PPI network which is helpful for the effective detection of the multi-

protein complex. The experimental works conducted on a PPI network prepared by Gavin et al. (2006) 
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and a reference dataset of 81 multi-protein complex showed that SVM-Net outperforms five of the state-

of-the-art protein complex detection methods. In the future, more valuable features such as gene ontology 

or gene expression can be incorporated. 
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