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Abstract The purpose of the presented work is to provide a basis for the development of a therapy model which 

supports defect specific treatment of cervical spinal stenosis. This contains the definition of a defect classification 

based on a retrospective study using MRI data sets of 182 patients. The introduced encryption key enables an 

integration of explicit and reproducible defect descriptions into the therapy model. Furthermore a meta-structure was 

defined which classify intervention relevant model data and thus provides an important basis for the development of 

model components. With the aim to facilitate the identification of defect specific characteristics in the MRI data set 

an approach for a fully automated identification of a stenosis was developed. This makes a contribution to the 

desired uniform treatment of cervical spinal stenosis. 

 

Keywords: Computer Aided Diagnosis, Model-based therapy, Cervical spinal stenosis, Defect 

classification. 

 
 
1. Introduction 

The model-based therapy is an approach to assist the physician in interpreting important 

intervention relevant data (Lemke et al., 2008).  The model describes linkages between information 

entities and their weighting for a clinical decision process (e.g. diagnosis or treatment planning).  A 

model-based decision support system contains components for situation assessment and therapy proposal 

or prognosis (Denecke et al., 2013). For this purpose a structural model has to be defined which is 

instantiated in the situation assessment, with measured data. The aim of the present work is to apply the 

model-based approach for assisting the treatment of cervical spinal stenosis. This disease is a narrowing 

of the spinal canal which is clearly visible in a Magnetic Resonance Imaging (MRI) data set which is used 

to identify the affected segment and defect characteristics. To classify the cervical spinal stenosis there 

exist the Muhle Cervical Spondylotic Myelopathy Classification System (Muhle et al., 1998) which can 

be used to identify the severity grade. However, this classification doesn´t provide information on the 

number of affected  segments or if there are additional pathologies which can influence the treatment 

strategy. Regarding the treatment itself, there exist no consent which operation technique has to be 

preferred (Khit et al., 2012; Alvin et al. 2014). To make some sort of progress in this field a therapy 

model has to be defined which considers a detailed defect classification which can be used to develop 
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defect specific treatment strategies. First approaches for digital patient and therapy models to assist the 

clinician are known, for example in the field of head tumor treatment and radiology (Meier et al., 2013; 

Stivaros et al., 2013). Also, there has been presented isolated applications to assist the diagnosis of spine 

diseases using algorithms for the detection and segmentation of vertebrae, spinal disc and spinal cord to 

provide 3D geometry for further disease analysis (de Leener et al., 2014; Larhmam et al., 2013; Law et al. 

2013; Neubert et al. 2012; Huang et al., 2009). So far, there can´t be found neither a therapy model for 

assisting the treatment of cervical spinal stenosis by connecting and weighting intervention relevant data 

nor methods for automatic stenosis identification. This paper presents first results for the development of 

a spinal stenosis therapy model. This contains a coding scheme for radiographic defect classification, a 

meta-structure to classify model data and an approach for an automated recognition of stenosis in an MRI 

data set.   

 
2. Methods 
2.1. Retrospective Study for Definition of Defect Characteristics 

The analysis of MRI data sets of 182 patients was performed using the following key features which 

can be used to describe a spinal stenosis and additional pathologies: stenosis dimension, modification of 

ligament structures, vertebrae malposition. The investigations of the MRI data sets enabled the 

determination of key feature frequency and possible joint appearance. 

 

2.2. Codification of Defects and Meta-Structure Definition   
Beside the defect classification further information entities for the therapy model could be 

determined during five work sessions with three neurosurgeons. The first step for a formal model 

representation is the definition of a meta-structure. This was done on the basis of a meta-structure of 

Strauß et al. which was used for a patient-model of the ear-nose-throat medicine (Strauß et al., 2008). In 

that, data classification was performed using the categories class, sub-class and type. It is possible to 

assign each element a further element or a sub-list with elements. The classes (static, dynamic) and sub-

classes (morphologic, functional, Atlas) used from Strauß et al. so far are not sufficient to structure a 

patient model for cervical spinal stenosis which assists the diagnosis, treatment process and evaluation of 

therapy result. Therefore five new classes and four new subclasses are introduced. For the codification of 

defects main characters, numbers and special characters are used in a defined order. 

 

2.3. Histogram of Oriented Gradients for Recognition of Defect Key Features 
For computer-based identification of stenosis in an MRI data set a novel method for bivariate gradient 

orientation histogram generation from 3D raster image data in combination with an already known linear 

support vector machine (SVM) (Chang et al., 2011) is used. The stenosis is classified referring to the 

grading system proposed by Muhle et al. (1998). The stenosis classification is done performing the 

following steps: 

1. Calculate the center point between two vertebrae centers. 

2.  Perform orthogonal translation in direction of the spinal canal.  

3. Generate a box with predefined size at this position.  

4. Resample this area of the image to a predefined resolution. 

5. Generate gradient orientation features. 

6. Classify if a stenosis is present using a SVM. 

 
3.  Results 
3.1. Defect Classification 

According to the observed occurence the stenosis dimension is breaked down into the four states 

mono-, bi-, tri-segmental and skip lesion (see figure 1). The first three states indicate how many segments 

are affected behind each other. The latter state describes multiple segments joint together which contains 

between two stenosed segments a segment without a stenosis. The key feature ligament modification is 
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subdivided into thickening of yellow ligament and thickening of the posterior longitudinal ligament. 

Scoliosis, Kyphosis and Listhesis are identified as vertebrae malposition. Table 1 gives an overview to the 

incidence of the mentioned key features which could be determined during the retrospective study. 

 

 
Fig. 1.  Defined defect characteristics. 

  

 
Cervical spinal stenosis is to be very common. The radiographic finding of this disease should therefore 

be correlated with the clinical presentation prior to decision-making regarding treatment. The sagittal 

diameter of the cervical spinal canal is of clinical importance in traumatic, degenerative, and 

inflammatory conditions. A small canal diameter has been associated with an increased risk of injury; 

however, there is a lack of reliable normative data on spinal canal diameters. The ability to compare 

various results that measure clinical deficits and outcome after operations is a necessity for successful 

worldwide discussion of degenerative changes of the cervical spine and its treatment. There is hardly any 

information in literature how to value and compare outcome assessed by MRI findings. The new created 

defect classification considers all relevant anatomical structures to define the degree of stenosis and the 

responsible structures in order to define the best approach to treat the degenerative changes. The encoding 

of additional pathologies, like thickening of ligaments, is a totally new approach on this way and may 

change the surgical anticipation of MRI findings and lead to patient specific surgery. The bi- and tri-

segmental stenosis with medial compression, usually C5-C7 and C4-C7, are the most frequent pathologies 

(see table 1). An additional thickening of the yellow ligament and posterior longitudinal ligament should 

be considered as an extra pathology.  
 

Table 1. Incidence for defined key features. 

 

Stenosis dimension Additional pathologies 

mono-segmental:     48 Thickening of yellow ligament:         54 

bi-segmental:           56 Thickening of posterior longitudinal ligament:   51 

tri-segmental:          68 Vertebrae rotation (scoliosis):                                               14 

Skip-lesion:             10 Kyphosis:                                               48 

  Listhesis 19 

 

3.2. Machine-readable Defect Description 
In the following there is an example for a textual defect description using the defined key features: 

Monosegmental stenosis affecting cervical vertebraes 3/4 with a medial compression. As additional 

pathology there exists a thickening of the yellow ligament and a listhesis. A more practical and 

reproducible format is provided with the use of codes for each key feature (see table 2). The suggested 

codes are placed behind each other regarding a defined order and using dots to separate the single codes.  
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Table 2. Encryption key for cervical spinal canal stenosis. 

 

Code Description 

Dimension[D] 

M Mono-segmental 

B Bi- segmental 

T Tri-segmental 

S Skip-lesion 

Segment [S] 

[C2...TH1] Identifier / Position 

Location [L] 

m Medial compression 

l Lateral compression 

Additional pathologies [AP] 

* Thickening yellow ligament 

# Thickening posterior long. lig. 

K Kyphosis 

L Listhesis 

R Vertebrae rotation 

 

 
Fig. 2.  Meta-structure of the cervical spine therapy model. 
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Regarding to this the defect described in textual form above can be described explicitly using the 

following code sequence: M.[C3/C4].m.*.L 

 

3.3. Meta-structure for Cervical Spine Therapy Model 
The first classification of model data is done using the three intervention phases preoperative, 

intraoperative and postoperative (see figure 2). In each of the phases there are data which describes 

morphological features of the disease (e.g in intraoperative phase: CT data) and which give information 

about the physiology of the patient (e.g. in preoperative phase: nerve conduction velocity) which can be 

classified as functional data. To integrate the defect classification into the therapy model an extra class is 

introduced. Belonging sub-classes are the defect code and the defect specific treatment strategy. This sub-

classes can contain further elements. For example the first element D of sub-class defect code can contain 

a link to the automated identification of stenosis dimension. Regarding to the use of a class Atlas in the 

meta-structure of Strauß et al. (2008)  it seems to be of interest to get details of the anatomy. To consider 

this in the therapy model available findings gained from experiments or numerical simulation are 

integrated as generic information introducing two new subclasses (see figure 2). 

 
Table 3. Validation results for automated stenosis identification in MRI data sets. 

 

Classification Performance measure Number datasets Rate 

True Positives 53 66.25% 

False Positives 10 12.5% 

True Negatives 13 16.25% 

False Negatives 4 5% 

Cross-Validation Accuracy 66/80 82.5% 

 

 
Fig. 3. Color-coded stenosis classification (green = no stenosis, red = stenosis). 

 

3.4. Fully Automated Stenosis Identification 
A detailed performance evaluation on 20 T2-weighted MR images of the cervical spine area is 

given. In a leave-one-out study on our MR image dataset, the proposed algorithm achieves a classification 

accuracy of 82.5 percent. More detailed results are given in table 3. An exemplary result on a patient MR 

image is shown in figure 3. 

 

4. Conclusion 
The presented meta-structure for a therapy model which aims to assist the neurosurgeon in a defect 

specific treatment of spinal stenosis is essential to work out intervention relevant model elements. The 

introduced defect classification with belonging codes enables a reproducible description of radiographic 
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disease characteristics. This is an important basis to develop defect specific treatment strategies. Against 

the background that determination of stenosis dimension is currently dependent on the impression and 

experience of the neurosurgeon the developed approach for fully automated stenosis identification in MRI 

data can make a contribution to a more uniform treatment of spinal stenosis. The automatic detection of 

stenosis in combination with the new classification will change the surgical strategy.  
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