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Abstract - This article presents a model of a deteriorating concrete structure subject to external load and inspection. The structure 

naturally deteriorates in time due to the environmental effects and the changes in the construction materials. The deterioration process is 

modeled as a gamma process. The stochastic process of load arrivals is generated by a Poisson process and the variability of the random 

loads is assumed to be governed by a generalized Pareto distribution. Upon inspection, the parameters of the gamma distribution are 

updated using the Bayesian method. Thus, after each inspection, the resistance of the concrete structure is modified and the corresponding 

lifetime distribution of the structure can be estimated. An example of concrete girders is provided to illustrate the whole methodology. 
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1. Introduction 
During the lifetime of a civil engineering structure, the resistance of the structure will decrease due to the influence of 

environmental conditions, external loads, and construction materials degradation. For concrete structures in the winter of 

high-latitude regions, spreading de-icing salt on concrete will allow chloride to penetrate into the concrete and corrode the 

steel bars embedded within. The daily spreading of de-icing salt can also make a freezing-thaw cycle that accelerates the 

cracking of concrete. Many hydraulic concrete structures have a similar problem such as the sea water penetrating into the 

concrete port. Highway bridges are also subjected to the impacts from heavy haul vehicles, which are another main factor 

affecting the structure’s reliability. These heavy loads can gradually damage the structure and intensify concrete cracking, 

which allows chloride to corrode the reinforcement bars faster. In common structural design, a structure fails when the load 

exerting on the structure exceeds its bearing capacity. As the structure ages, the probability of failure will increase. 

A typical deterioration of civil engineering structure can be expressed as a monotonically decreasing process, as the 

corrosion process and the growth of concrete crack width are irreversible if there is no repair work implemented. Enright [1] 

adopted a parabolic function, g(t) = 1 – k1t +k2t
2, as the resistance degradation function that referred to the fraction of initial 

resistance of a structural member remaining at time t. Suo [2] directly used some physical and mechanical models to simulate 

the corrosion process of reinforcement bars in reinforcement concrete (RC) structure. The proportion of a concrete surface 

with crack widths exceeding the limit width at time t, dcrack(t), was the main index investigated. 

Except for concrete structure, there are also many studies on other monotonically deteriorating civil engineering 

structures. Miran et al. [3] investigated the reliability of buried pipelines with external defects. They assumed the initiation 

time of each defect was considered to follow a gamma distribution, and the defect with a larger detected dimension occurred 

earlier. Hong [4] established the way to calculate the serviceability, pt, of an asphalt road. Traffic volume, material’s 

deterioration, and a normally distributed error term were involved, and each parameter related to these factors was assumed 

to be normally distributed. 

Traffic load on a bridge is classified by axle load. From the typical diagram of axle loads, heavier axle loads occur fewer 

times, so the distribution of axle loads is close to a negative exponential distribution. In the paper by Noortwijk et al. [5], the 

authors assumed that only the loads exceeding a critical level l0 can affect the reliability, and they applied generalized Pareto 

distribution to describe the loads. The paper gives a dike section of Den Helder sea defense affected by the wave run-up level 

as an example. The periodic external loads exceeding a certain sea level l0 were defined as the external loads that might affect 

the sea defense. The stochastic process of loads was defined by a homogeneous Poisson process. 
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In order to predict the performance of a civil engineering structure, the initial distribution will be estimated based on 

the past experience and historical data. However, when new inspection data becomes available, the initial distribution should 

be updated by using the new data. As the deteriorating scenario and the deterioration rate can be different due to the variability 

of the surrounding environment, the initial assumption would not be precise anymore. Bayesian updating is a useful method 

to update the initial distribution of the process parameters. Unlike maximum likelihood estimation method (MLE), Bayesian 

updating does not require a large number of samples to estimate the parameters, which is an ideal method to involve the 

inspecting data [6]. As this method is complemented by recalculating the related parameters of the initial distribution of the 

deterioration process, some researchers use the term Bayesian parameter estimation method [7]. 

The paper is organized as follows. A gamma process is selected to model the deterioration of the reinforcement concrete 

(RC) bridge structures, as gamma process is widely used for modeling wear processes [8]. The periodic traffic loads that 

exceed a certain value occur randomly according to a Poisson process, and the loads’ exceedance over the certain critical 

value is governed by a generalized Pareto distribution. The objective is to obtain the distribution of structural lifetime, which 

is a function of deterioration process and random loads. Finally, the Bayesian parameter estimation method is used to update 

the distribution of the process parameters using inspection data and to calculate the updated residual life of the structure.  

 

2. Random process of a deteriorating concrete structure 
Since the deterioration of concrete structures is a complex process that involves many factors, to simplify the model, 

the following assumptions should be added. 

(1) For RC bridge structures, their deterioration is observable and it is measured by the degrading rate of the 

flexural capacity of the girders. The corrosion of reinforcement bars begins when the bridge begins to operate. 

(2) The impact of natural disasters (such as earthquakes) is not considered. 

(3) The loads are regarded as a series of pulses so that their duration time can be neglected.  

The random variable X(t) representing the total deterioration of structural resistance in t time units is assumed to have 

a gamma distribution, with the probability density function given by 

 

𝑔(𝑥|𝛼(𝑡), 𝛽) =
𝛽𝛼(𝑡)

𝛤(𝛼(𝑡))
𝑥𝛼(𝑡)−1𝑒−𝛽𝑥 (1) 

 

where α(t) is the shape parameter which is the function of time, and β is the scale parameter. The gamma process has 

the following properties: 

· X(0) = 0 with probability one; 

· The increment between time t1 and any time t2 after t1, X(t2) – X(t1), follows the distribution g(α(t2) –α(t1), β) for all t1 

≥ 0; 

· The increments of X(t) are independent. 

From empirical studies, the mean value and the variance of the total deterioration at time t are usually expressed by 

means of a power law. Since the degradation of resistance of concrete structures is mainly caused by the corrosion of 

reinforcement, according to Ellingwood [9] a linear function, 𝛼(𝑡) = 𝛼𝑡, is suitable to describe the degradation of concrete 

structures due to corrosion of reinforcement. Consequently, the mean value and the variance of the deterioration are linear 

as well. 

 

𝐸(𝑋(𝑡)) =  
𝛼𝑡

𝛽
      ，   𝑉𝑎𝑟(𝑋(𝑡)) =

𝛼𝑡

𝛽2
 (2) 

 

3. The stochastic process of external loads 
When defining traffic loads, it is not only necessary to define the arrival distribution of traffic loads, but also to define 

the distribution of the loads’ magnitude. For the occurrence of traffic loads, it is reasonable to adopt the Poisson process, 
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𝑃(𝑁(𝑡) = 𝑛) =  
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡    (𝑛 = 0,1,2… ) (3) 

 

for all t≥0, where λ is the intensity of load occurrence, and n is the total number of the loads arrived on the bridge in the 

time interval (0,t]. 

According to the real traffic volume survey results, the axle-load distribution of different grades or variant types of 

roads is different. Since the axle-load distribution of heavy trucks and cars are respectively within a certain range, the 

distribution usually has two peaks. Hence, it is more accurate to use a superposition of several distributions to represent the 

axle-load distribution [10]. However, in order to simplify the problem, it is assumed that only the loads above a certain value 

can affect the girder. For highway bridge, this certain value refers to the superposition of girder’s self-weight and light loads, 

so the value of the load can be expressed as a minimum load l0 value plus a portion exceeding this minimum value. The 

exceeded portion Y is assumed to have generalized Pareto distribution. Therefore, the corresponding maximum moment in 

the girder also has generalized Pareto distribution. The probability density function and cumulative distribution function of 

generalized Pareto distribution are given by 

 

𝑓𝑌(𝑦|𝑎, 𝑐) =

{
 

 1

𝑎
[1 −

𝑐𝑦

𝑎
]
(
1
𝑐
)−1

         𝑐 ≠ 0, 𝑎 > 0 

1

𝑎
exp (−

𝑦

𝑎
)                 𝑐 = 0, 𝑎 > 0 

 (4) 

𝐹𝑌(𝑦|𝑎, 𝑐) =

{
 

 1 − [1 −
𝑐𝑦

𝑎
]
(
1
𝑐
)

           𝑐 ≠ 0, 𝑎 > 0

exp (−
𝑦

𝑎
)                       𝑐 = 0, 𝑎 > 0

 (5) 

 

where a is scale parameter, c is shape parameter. 

 

4. Combination of structural deterioration and loads 
For a bridge structure, if r0 is the initial flexural capacity of a girder, and the girder is subjected to n  heavy loads until 

the age t since the bridge opening, the probability of no failure during this time is the probability that the girder does not fail 

each time when a heavy load hits on the girder, which is the probability that all heavy loads are lower than the residual 

flexural capacity. According to the derivation given by Karlin [11] and Ellingwood [9], the conditional occurrence of each 

load has uniform distribution with density 1/t in the time interval (0,t]. Therefore, the conditional probability that the girder 

will not fail is equal to the probability that the load will occur multiplied by the probability that the girder will not fail under 

the load, integrated from 0 to t. 

 

𝑃{no failure under one load|𝑁(𝑡) = 𝑛} = ∫
1

𝑡

𝑡

0

𝐹𝑌(𝑟0 − 𝑙0 − 𝑋(𝜏))𝑑𝜏 (6) 

 

Since all n loads occur independently with identical distribution, the survival function of the girder at age t, S(t), can 

be obtained by the law of total probability [5], 
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𝑆(𝑡) = 𝑃(no failure in (0, 𝑡]) =  𝐸 (∑(∫
1

𝑡

𝑡

0

𝐹𝑌(𝑟0 − 𝑙0 − 𝑋(𝜏))𝑑𝜏)

𝑛

·
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡

∞

𝑛=0

)  

= 𝐸 (𝑒𝑥𝑝 (−𝜆∫ 1 − 𝐹𝑌(𝑟0 − 𝑙0 − 𝑋(𝜏))𝑑𝜏
𝑡

0

)) 

(7) 

 

5. Bayesian updating and residual life 
According to Bayes’ theorem, if the prior distribution is assumed, the posterior distribution is conditional given the 

inspection data set x [12]. However, directly updating Eq. (7) is considerably challenging, as many parameters with 

unknown distributions are involved. Since the structural lifetime is the combination of deteriorating process and traffic 

load, and the traffic load data can be found from annual traffic survey, the only part which needs updating is the 

deteriorating process , which is the gamma process. Therefore, if the prior distribution of the parameters (α and β) is 

denoted as π(α,β), the posterior distribution π(α,β|x) will be [13]: 

 

𝜋(𝛼, 𝛽|𝒙) =
𝑙(𝒙|𝛼, 𝛽) ∙ 𝜋(𝛼, 𝛽)

∬ 𝑙(𝒙|𝛼, 𝛽)𝜋(𝛼, 𝛽) 𝑑𝛼𝑑𝛽
 ∝  𝑙(𝒙|𝛼, 𝛽) ∙ 𝜋(𝛼, 𝛽) (8) 

 

where 𝑙(𝒙|𝛼, 𝛽) is the likelihood function of the inspection data given α and β. Since the denominator is a constant 

value, the posterior π(α,β|x) is proportional to the production of the likelihood function and the prior density. 

In this paper, the prior joint distribution π(α,β) follows the bivariate normal distribution with independent α and β . In 

reality, due to the fact that the error of measurements is always known and controllable, the variances of α and β can be 

regarded as constant values. Thus, 

 

𝜋(𝛼, 𝛽) =
1

2𝜋𝜎𝛼𝜎𝛽
exp(−

1

2
(
(𝛼 − 𝜇𝛼)

2

𝜎𝛼2
+
(𝛽 − 𝜇𝛽)

2

𝜎𝛽2
)) (9) 

 

For each inspection, if only one pair of parameters can be obtained (denoted as αi, βi), by inference, the posterior joint 

probability density is conjugate to the prior joint probability density, and the updated parameters, α* and β*, happen to be 

the averages of the prior values and the inspected values, 

 

𝜋(𝛼, 𝛽|𝛼𝑖, 𝛽𝑖) ∝ exp(−
1

2
(
(𝛼 − 𝜇𝛼

∗ )2

𝜎𝛼2
+
(𝛽 − 𝜇𝛽

∗ )
2

𝜎𝛽2
))  , (10) 

where 

𝜇𝛼
∗ =

𝜇𝛼 + 𝛼𝑖
2

            𝜇𝛽
∗ =

𝜇𝛽 + 𝛽𝑖

2
 

 

Therefore, if an inspection is performed at time T, the survival probability distribution S*(t) will be calculated using 

the observed resistance r1 and the new gamma process X* (t) with the updated parameters, 

 

𝑆∗(𝑡) = 𝐸 (𝑒𝑥𝑝 (−𝜆∫ 1 − 𝐹𝑌(𝑟1 − 𝑙0 − 𝑋
∗(𝜏))𝑑𝜏

𝑡

0

)) = 1 − 𝐹∗(t)   (𝑡 > 0) (11) 

 

http://www.baidu.com/link?url=b0athvHSDh7L0gEBKf4mnGvpVQzsATmGVq81molc0y_Z3RLPsqeT1321unAVmmUoVl2bUEST0qoUqHTOGcj9VK
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The survival density of the structure is obtained as the derivative of F*(t): 

 

𝑓∗(𝑡) = 𝐸 ((𝜆 (1 − 𝐹𝑌(𝑟1 − 𝑙0 − 𝑋
∗(𝑡))))  · 𝑒𝑥𝑝 (−𝜆∫ 1 − 𝐹𝑌(𝑟1 − 𝑙0 − 𝑋

∗(𝜏))𝑑𝜏
𝑡

0

)) (12) 

 

Furthermore, the total life of the girder is the addition of time T and the mean residual life after the inspection, 

 

𝑀(𝑇) = 𝑇 + ∫ 𝑡 · 𝑓∗(𝑡)𝑑𝑡
∞

0

 (13) 

 

6. Example: A concrete highway bridge 
To illustrate how this methodology works, we consider an example of a concrete highway bridge with T cross-section 

girders, as this type of cross-section is relatively simple for design and construction. It is a simply supported girder bridge 

which consists of five girders, and all of the girders have the same cross-section. The computed span of each girder is 12 

meters. The cross sections of the bridge and the girder are shown in Fig.1, and the material characteristics are given in Table 

1. All girders are subjected to bending and shearing force when traffic loads exert on them, and the maximum flexural 

moment happens at the middle of each girder. If only the flexural capacity of the girder is taken as the main study object, the 

girder will fail when the bending moment caused by the vehicle load at a time is greater than the flexural capacity of the 

girder at that time. 

    
(a) Cross section of the bridge                       (b) Cross section of the concrete girder 

Fig. 1: Cross-section details of the highway bridge. 

 
Table 1: Some material characteristics for the concrete girders. 

Variable Mean 

Steel reinforcement yield strength, fy 330 MPa 

Concrete compressive strength, f’c 22.4 MPa 

Initial diameter of flexural reinforcement, df 31 mm 

The effective depth of flexural reinforcement, h0 106 cm 

 

When the bridge construction is completed and the bridge starts operation, the initial flexural capacity of each girder 

(Mcp) is 4713.25 kN·m [14]. The density of RC is about 2500kg/m3. Except for the bending moment generated by 

the self-weight, 485.1 kN·m, the flexural capacity of each main beam is 4228.15 kN·m. If the bending moment 

generated by trucks with the gross weight less than or equal to 17.5 tons (i.e., less than 514.5 kN·m) is negligible, 

according to the axle-load spectrum obtained from the traffic volume survey, the portion of the bending moment exceeding 

514.5 kN·m caused by traffic loads can be fitted by the generalized Pareto distribution with a = 0.5 and c = 0.02. The 

bending moment exceeding 514.5 kN·m caused by traffic loads occurs about 4000 times per year. 
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By investigating similar bridges under the same environmental conditions, bridge engineers estimate that the mean 

value of the deterioration rate of flexural capacity is 9.78kN·m/year, and the corresponding variation is 6.5. Hence, the 

parameters of the gamma distribution are α = 14.715 and β = 1.505. The prior joint normal distribution of the parameters of 

the gamma distribution is shown in Table2. Based on Eq. (7), the prior probability density function of the lifetime can be 

calculated by Monte Carlo method. 

When the bridge has been in operation for 10 years, by measuring the diameter of steel bars of the five girders, the 

bridge engineers found that the flexural moment capacity is 4550 kN·m, and the deterioration rate of flexural moment 

capacity is 16.84 kN·m/year, with the corresponding variation of 8.8. Consequently, the corresponding α and β values are 

equal to 32.226 and 1.914, respectively. In addition, the new traffic survey shows that the bending moment exceeding 514.5 

kN·m caused by traffic loads occurs 5000 times per year. By applying Bayesian updating, the posterior distribution can be 

computed (see Table 2), and the corresponding posterior distribution of lifetime can also be computed by Monte Carlo 

method.  

 
Table 2: Comparison of prior and posterior parameters. 

Parameter Initial 

Mean (μ) 

Updated 

Mean (μ’) 

Variance 

(σ2) 

95% CI of Updated 

Mean 

α 14.715 23.47 0.5 (22.65, 24.29) 

β 1.505 1.710 0.08 (1.5788, 1.8412) 

 

Fig.2 shows the comparison of prior and posterior cumulative distribution functions and the probability density 

functions of the residual life of girder after the inspection in the 10th year. The structure was found to degrade significantly 

faster than the initial expectation, which is most likely due to the increase in traffic volume and the increase in heavy vehicles 

within the ten years. This scenario is very common in most highway bridges. In the actual operation of the bridge, once this 

situation happens, the previous maintenance plan should be revised in time to ensure the normal operation of the bridge under 

the new degrading law. 

 
(a) Cumulative distribution function of the girder’s residual life 
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(b) Probability density function of the girder’s residual life 

Fig. 2: Comparison of the prior and the posterior distribution of the girder’s lifetime 

 

7. Conclusions 
This paper combines the vehicle loads acting on the bridge with the deterioration of concrete and updates the residual 

life of the bridge structure by the Bayesian updating method. Since directly updating the structural lifetime distribution is 

complicated, the deteriorating process of concrete modeled as the gamma process and the effect of vehicle loads modeled as 

the Poisson process and generalized Pareto distributed random variable are considered. After each inspection, the gamma 

process is updated by Bayesian method. The effect of traffic loads can be obtained from the latest report from government 

or related institutions. Finally, the cumulative distribution function and probability density function of structural residual life 

can be calculated by Monte Carlo method. This method can effectively take advantage of the inspection data to guide the 

future maintenance of infrastructure. 
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