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Abstract – This study highlights innovative and novel techniques that employ Artificial Intelligence (AI) technology in evaluating and 

predicting concrete compressive strength. Past literature utilized different AI algorithms to predict the nonlinear behaviour of concrete, 

of which the most commonly used is the Artificial Neural Network (ANN). Limited past studies used the probabilistic inference approach 

by using Bayesian Networks (BN) to envisage the structural health integrity and mechanical performance of concrete. This research 

investigates the potential applicability of BN in predicting the compressive strength of self-compacting concrete made with various 

supplementary cementitious materials and basalt fibers. Two learning algorithms, namely Naïve Bayes and Markov Blanket, were 

employed along with various discretization methods to maximize network performance and minimize integral absolute error. Research 

findings showed that Naïve Bayes classifier, coupled with K-means discretization tool with 4 segments of ‘days’ variable and 3 segments 

of the remaining variables, gave the highest correlation between experimental and predicted values. The accuracy of the predicted BN 

results was slightly superior to that obtained from the ANN model.  
 

Keywords: Probabilistic Inference, Bayesian Network, Artificial Neural Network, Compressive Strength, Sustainable 

Concrete. 

 

 

1. Introduction 
Bayesian network is a graphical representation of probabilistic models that shows causal and effect relations between 

the variables and deals with uncertainties of a domain [1, 2]. It follows the concept of the probability theory, by which a 

certain domain is defined with a set of random variables of possible occurrences. The visual illustration of the network 

represents the conditional dependencies among variables for a given problem of this domain [2, 3]. It shows the effect of 

any two conditionally independent variables on each other through intermediary variables that separate them [3]. The 

proposed mathematical equation used in BN algorithms is expressed in Eq. (1). 

 

P(H|E,c) =
P(H|c) × P(E|H,c)

P(E|c)
 (1) 

 

In Eq. (1), H, E, and c represent the hypothesis, evidence, and background context, respectively. The term P(H|E,c) denotes 

the posterior probability of the hypothesis after considering the effect of the evidence E on the context c. The term P(H|c) 

represents the prior probability of H with respect to c alone, while P(E|H,c) indicates the likelihood of having the evidence 

in the case of the hypothesis and the context both true. The last term, P(E|c), can be considered as normalizing or scaling 

factor, as it is independent of H [4]. The posterior probability distribution of BN is obtained by multiplying the likelihood 

“L”, which is defined by Eq. (2), with the prior probability and then normalizing.  

 

P(E|H,c) = L(H) = ∏ P(Ei|H)

i

 (2) 

 

Bayesian networks are built on two main pillars, qualitative and quantitative models [5]. For the qualitative models, BN 

correlates and finds the relationship among the variables through a causal structure learning approach [6]. Then, a direct 
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acyclic graph (DAG) is generated to represent the variables of interest through the nodes and the casual dependencies 

through the directed links connecting the nodes. For instance, a simple BN structure for producing a research publication 

is shown in Fig. 1. In this aspect, the arrow links are directed from the parent node to its child node. As the network 

adopts an acyclic approach, the possibility of ending up reaching the same starting node is non-existent [7]. On the other 

hand, the quantitative models mainly concern the local probability distribution for specifying the probabilistic 

relationships by which the dependencies are quantified. This is performed by conditional probability tables (CPT) that 

classify nodes with their parents [5]. 

 
Fig. 1: Simple Bayesian network structure of a research publication. 

 

Bayesian networks have been implemented in a wide range of real-world applications due to their ease in the 

estimation of certain variables, treatment of uncertainties, and decision analysis with quick responses to the user [2]. 

The major applications that extensively utilize BN are risk management, quality management, financial analysis, 

medicine applications and diagnosis, psychological applications, and various engineering applications [2, 8]. Despite 

the capability of experimenting with both continuous and discrete variables, many Bayesian network algorithms only 

deal with the latter. As such, all continuous variables are discretized and then classified into different categories (states), 

such as high, medium, and low [7]. 

The probabilistic inference of the network is based on four steps, initial probability distribution, reasoning from 

cause to effect, combined influence of variables, and reasoning from the effect to the cause [7]. Further, BN learning 

algorithms are highly dependent on the type of infused data. In the event of using data without a hypothesis constraining 

the relationships between the variables, the unsupervised learning algorithms are employed. Otherwise, the supervised 

learning algorithms such as Naïve Bayes and Markov Blanket can be used for the inference. Naïve Bayes is considered 

one of the most effective learning algorithms for supervised machine learning, as it is based on the independencies 

between the predictors [7, 9]. On the other hand, Markov Blanket algorithm is usually used for high-dimensional models 

where too many variables affect the target node [10].  

Based on the available literature, the use of the probabilistic inference approach to anticipate sustainable self-

compacting concrete performance has not been investigated yet. Thus, the aim of this study is to evaluate the ability to 

employ Bayesian network algorithms to predict the mechanical properties of sustainable self-compacting concrete by 

which a large amount of cement content was replaced with different supplementary by-products materials. The 

probability-based network results are compared with those of artificial neural networks that are obtained from the same 

dataset. It is anticipated that the probability approach can lead to a more in-depth understanding of the interaction 

between the concrete ingredients and their effect on the final concrete properties, while also providing a numerical 

platform for performance prediction of sustainable self-compacting concrete. 
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2. Experimental Methodology 
The dataset, obtained from past literature [11], is characterized by the constituents and compressive strength results of 

of high strength self-compacting concrete (SCC). To enhance the sustainability of the concrete, mixes were designed to 

attain 80% cement replacement with different combinations of supplementary cementitious materials (SCM). The 

supplementary cementitious materials used in the study were fly ash, silica fume, and ground granulated blast furnace slag 

slag (GGBS). The cement replacement strategy was carried out through binary, ternary, and quaternary mixes at different 

percentages ratios. For the binary mixes, cement was replaced with one SCM at a time. The replacement range for each 

SCM was chosen based on recommendations from past literature [12-16]. Accordingly, fly ash, silica fume, and GGBS 

replaced cement by 0-40, 0-20, and 0-80%. In ternary mixes, the combined effect of two SCM percentages as partial cement 

replacement was studied. The quaternary mixes were composed of all three SCMs in different combinations to replace 80% 

of cement content. For all generated mixes, four different basalt fibers were used, ranging from 0.25 to 1% by volume at 

0.25% increments. 

To minimize the number of variables in the study and focus on the effect of SCMs and basalt fibers, all other mixture 

proportioning variables were kept fixed. For instance, water-to-binder ratio was set to 0.36 and the flowability of concrete 

was maintained between 400 and 700 mm through the use of a high-range water reducer, HRWR (1.5%, by binder mass). 

Fine and coarse aggregates were also set to 896 and 800 kg/m3, respectively. The compressive strength was measured after 

3, 7, and 28 days of water curing at room temperature. Experimental test results comprised 226 data points that varied based 

on SCM content, basalt fibers content, testing age, and compressive strength. All other fixed constituents were removed 

from the data, as they had no effect on the training cycles. The developed data set was used to train Bayesian Network (BN) 

with a commercial tool called Bayesialab using two learning algorithms, Naïve Bayes and Markov Blanket. The results 

obtained from the BN model were then compared to predicted results acquired from a self-developed code of Artificial 

Neural Network (ANN). 

 
2.1. Bayesian Network 

The Bayesian Network prediction model was developed through the use of Bayesialab commercial software. Before 

processing the data set into the software, it is essential to know the domain and set of variables affecting the results [7]. Such 

knowledge will ease the construction of DAG for efficient training and prediction cycles. The accuracy of the prediction 

algorithm was also improved by choosing the right discretization method to convert the continuous data into discrete ones. 

Regardless of the network structure and discretization method, the selected machine learning algorithm has the highest 

impact on the inference of the network; thus it was essential to examine many algorithms to enhance the accuracy of the 

results. In the current study, a model is developed to relate multiple independent variables, such as the type and content of 

the binding materials, water to binder ratio, additives, type and quantity of coarse and fine aggregates, and testing age, to 

the concrete compressive strength. As the content of fine and coarse aggregates and the HRWR additive were fixed to a 

certain amount, they were omitted during the network modeling preparation. As such, the used variables were compressive 

strength (CS), cement (C), fly ash (F), silica fume (S), GGBS (G), basalt fibers (B), and testing age in days (D). The 

probability of having certain compressive strength given the observations of the other variables is proposed in the following 

Eq. (3): 

 

P(C|C,F,S,G,B,D)=
P(CS,C,F,S,G,B,D)

P(C,F,S,G,B,D)
 (3) 

 
The datasets were organizing in a table of seven columns, whereby the first six columns represented the concrete 

constituents (cement, fly ash, silica fume, GGBS, basalt fibers, and days) and the last column showed the corresponding 

compressive strength result. In total, 226 data points, representing 75 different mixes with 3 different testing ages, were 

inputted. Further, the data was processed by subdividing it into training and testing sets. This process is important to validate 

the strength of the prediction model and increase its accuracy. In fact, 20% of data are typically used for the testing data, 

and the remaining 80% is used for the learning algorithm. 
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2.2. Artificial Neural Network 

An artificial neural network (ANN) was used to train and predict the same concrete data set employed in the 

network prediction tool. Back-propagation ANN code was developed with MATLAB coding interface and used to train 

test the data. The developed code was for a one-hidden layer network that used the log-sigmoid transfer function to 

the output results and the sum of square error (SSE) with a minimum value of 0.1 to stop the training process. The initial 

weights of the input variables were chosen randomly with values between -0.5 and 0.5, while the learning rate 

responsible for changing the weights after each learning cycle was used in two values, 0.05 and 0.1. Similar to BN, the 

ANN training and testing data were 80% and 20% from the original data set, respectively. Actually, the exact same 

training and testing data were employed in ANN, as it serves as a benchmark to verify the accuracy of the BN inference. 

The ideal ANN configuration was determined through analyzing and testing 14 different architectures, whose optimum 

was established based on the correlation coefficient, R2, between the evaluated results and testing data. The main 

parameters to be changed were the learning rate and the number of neurons. As a result of this process, the ANN 

employed in the study was with 6 inputs values and 28 neurons with 1 output at a learning rate of 0.05 (6-28-1 

architecture).  

 
3. Results and Discussion 
3.1 Bayesian Network 

The statistical approach of finding concrete compressive strength was highly dependent on the training and testing 

data and the discretization method employed. Using Naïve Bayes and Markov Blanket algorithms, the optimum 

discretization method of the network was determined by measuring integral absolute error (IAE, %) shown in Eq. (4), 

as it is statically more sensitive than ordinary average error [17]. 

 

IAE(%) = ∑
[(Ei-Pi)2]

0.5

∑ Ei
×100 (4) 

         

Where Ei and Pi are the experimental and predicted results. 

 
Table 1: Different discretization tools used in the study. 

 

Discretization Tool IAE% Comments 

R2-GenOpt 8.8 Default  

R2-GenOpt 6.2 3 days intervals  

Density Approximation 11.3 3 intervals 

Density Approximation 11.3 5 intervals 

K-Means 8.27 Default 3 intervals 

K-Means 4.26 4 days intervals 

K-Means 7.37 4 intervals all 

Equal Distances 11.1 Default 3 intervals 

Equal Distances 13.9 7 intervals 

Equal Frequencies 9.2 Default 3 intervals 

Equal Frequencies 9.9 7 intervals 

 

For the Naïve Bayes approach, five different discretization algorithms were tested to maximize the network’s 

performance and to reduce the IAE below 10%, as to be acceptable [17]. Table 1 summarizes the IAE of the employed 

methods. It was found that the k-means method with 4 segments of the ‘days’ variable and 3 segments of the remaining 
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variables gave the highest correlation between all other methods with IAE% of 4.26%. The R2 of the trained data is found 

to be 0.71, meanwhile, the predicted compressive strength of the testing set gave higher accuracy with R2 of 0.91. The 

correlation between the predicted and the experimental values of compressive strength for the training and testing dataset is 

illustrated in Fig. 2(a) and (b), respectively. 

 

  
(a) (b) 

Fig. 2: Naïve Bayes approach for correlating (a) BN training and experimental strength results and (b) BN testing and experimental 

strength results. 

 

As shown in Fig. 2(a), the correlation coefficient, R2, between the trained and predicted data was 0.71. Besides this 

relatively imprecise correlation, it is clear that the predicted compressive strength results are deviated from the line of 

equality at values below 20 MPa and above 60 MPa. In comparison, R2 between the testing and predicted data was 0.91, as 

illustrated in Fig. 2(b), with a more accurate prediction of the testing data. 

For Markov Blanket learning algorithm, it only used the dataset of ‘days’ relating to the testing age to predict the 

concrete compressive strength. The nodes connecting to other variables were removed. The overall precision of the learning 

and testing data sets was 60% and 53%, respectively. The predicted values of compressive strength had IAE% of 13.8% and 

R2 of 0.46, as seen in Fig. 3. In fact, scatter plot results show that only three compressive strength values were predicted, 

namely 34, 44, and 58 MPa. Such low precision and inaccuracy can be attributed to the limiting action of the MB algorithm 

to the required nodes for analysis and to restricting the variables to the testing age only.  
 

  

Fig. 3: Markov Blanket approach for correlating predicted and experimental strength results. 

 

3.2 Bayesian Network vs. Artificial Neural Network 
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The correlation coefficients of Bayesian network training and testing phases by Naïve Bayes classifier were 0.71 

and 0.91, respectively. The prediction sensitivity and accuracy were found to be related to the discretization method 

used before processing the data. Additionally, the use of different discretization tools within the same model gave more 

accurate results. In contrast, outcomes of the ANN for training and testing phases were in high agreement with the target 

results with R2 of 0.95 and 0.90, respectively. Its integral absolute error was 4.27%. The accuracy of the ANN can be 

attributed to the absence of a data discretization method before processing, as the learning algorithm depends on finding 

the error between the predicted and target values, distributing the differences among all the initial weights, and 

continuing the process until a high level of accuracy is attained.  

Fig. 4(a) illustrates the compressive strength results obtained from experimental testing and those predicted by BN 

and ANN. It is clear that both models converge close to the 45°-line, indicating a high level of accuracy in predicting 

the compressive strength using BN or ANN. Further, to evaluate the performance of the developed algorithms, the error 

between the experimental and predicted strength is plotted in Fig. 4(b). The range of error generally varies between -10 

and +10%, with only 7 out of the 90 data points (7.8%) being outside this range. The trend lines associated to the ANN 

and BN prediction data points are also plotted. The respective slopes of the two networks, 0.061 and 0.013, indicate that 

the Bayesian network structure renders a slightly more accurate and precise prediction of the compressive strength. 

The predicted strength results are also analyzed using hypothesis testing with a 95% confidence interval (α = 0.05). 

The null hypotheses tested consider that the strength predicted by each of BN and ANN are not different than those 

obtained from the experimental testing. The alternative hypotheses are that the predicted and experimental results are 

different. Results show that the respective t-values of BN and ANN testing are 0.0049 and 0.0313, which are less than 

1.98. Thus, the null hypothesis cannot be rejected. As such, the strength values acquired from BN and ANN are not 

different than those attained from experimental testing, i.e., both structures could be used in predicting the concrete 

compressive strength. Yet, it seems that BN is slightly more accurate, which is agreement with the error analysis. 

 

  
(a) (b) 

Fig. 4: (a) Correlation among experimental, BN and ANN results and (b) the error attributed to the ANN and BN predicted 

strength results. 

 

4. Conclusions 
The use of a probability-based algorithm is a novel approach for predicting the mechanical performance of concrete. 

The Bayesian Network structure was implemented with different discretization techniques to provide a numerical 

platform for predicting the compressive strength of self-compacting concrete made with supplementary cementitious 

materials. The results showed that Naïve Bayes algorithm, along with the K-mean model discretization of 4 intervals of 

‘days’ dataset and 3 intervals for the remaining ones, led to a high level of inference with IAE and R2 of 4.26% and 

0.91, respectively. Markov Blanket algorithm failed to predict the behavior of the compressive strength with its 

dependence on the ‘days’ parameter solely. The accuracy and precision of the predicted Bayesian network were slightly 

superior to that obtained from an ANN model. The novelty of this work resides in the ability to employ probabilistic 
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approaches using Bayesian Networks to effectively predict concrete compressive strength rather than conducting costly, 

labor-intensive, and time-consuming laboratory testing. Future work may explore the applicability of the BN approach in 

in envisaging the mechanical and long-term durability performance of different types of concrete. 
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