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Abstract - Spectral element method, which works in the frequency domain, is usually used for modelling structures. It is a wave-based 

numerical approach. The advantage of using this method is that it reduces the number of degrees-of-freedom by representing the whole 

structure using a single element. The present study deals with finding damage in non-uniform structures using the spectral element 

method. Since the uncertainty is part and parcel of every real structure, it needs to be introduced into every methodology meant for 

damage detection. Therefore, this method is also used here for the stochastic system to introduce uncertainty in the model. Damage at 

any location is introduced as a single edge notch crack. The crack introduced is a non-propagating crack. The damage quantity introduced 

is expressed in terms of crack flexibility-based on the concept of fracture mechanics. At the damage location, the compatibility conditions 

are to be satisfied. With the help of the boundary as well as compatibility conditions being satisfied, the displacement equation for 

damaged case in the frequency domain is developed. In order to introduce parametric uncertainty, expressions of spectral stiffness and 

mass matrices are established using Karhunen-Loéve expansion. The mass and stiffness matrices for the stochastic case are expressed as 

random field and are discretized in terms of the random variables. Eigenvalue analysis is performed to obtain mode shapes for both 

damaged and undamaged cases. Difference between the mode shapes is considered to obtain the damage location. The methodology is 

found to be effective in localizing damage in non-uniform structures in the presence of parametric uncertainty. 

 

Keywords: Spectral element method, Karhunen-Loéve (KL) expansion, Damage localization, ´ Non-uniform structure, 

Parametric uncertainty, Random field  
 

 

1. Introduction 
SHM is a process of observing a structure over the course of time. These studies are used to determine the present state 

of the structure. In the case of damage, the modal properties (i.e. frequencies and mode shapes) change and these are 

compared with that of its undamaged state values to localize and quantify the damage. In the process of inverse optimization, 

the inverse algorithm is used to obtain the model parameters like stiffness. The measurements taken from the actual structures 

are the displacement or the acceleration responses, which are used to extract the mode shapes and the frequencies through 

fast Fourier transformation (FFT) or frequency domain decomposition (FDD). These are then used to obtain the stiffness or 

other model properties. There are lots of work done in this field using various techniques, and different level of success has 

been achieved in these fields [1]. The spectral element method (SEM) has added advantages over these techniques. The 

concept of SEM was given by Beskos [2] in 1978, which includes the key benefits of the Finite element method (FEM), 

Dynamic stiffness method (DSM) and Spectral analysis method (SAM). In the SEM, [3] the stiffness matrix is established 

in the frequency domain. The whole structural model is developed as a single element in the frequency domain, thus reducing 

the degrees of freedom. Eigenvalues and eigenvectors are the exact solutions. Also, SEM lowers the computational time and 

cost as it requires fewer degrees of freedom. SEM [3] is based on the analytical solution of the displacement wave equation 

in the frequency domain. In this method, the interpolation function is the exact solution of the wave equation. There are, 

however, some of the drawbacks associated with this method. Complex geometries cannot be modelled using this method as 

wave Eqs. are not available for the complex geometries. This method again cannot be used for the nonlinear system because 

the superposition principle is not applicable to the nonlinear systems. In any of the damage identification procedures, 
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uncertainties are inherently involved in the parameters, modelling, and measurements. All these kind of uncertainty limits 

the use of deterministic damage detection techniques. If the level of uncertainty is high, then the actual information regarding 

the damage condition may get concealed, and the damage may not be identified. In other words, this may lead to negative 

falsity, where actual damage is not detected, or positive falsity, where false damage is detected, in the intact structural 

element. When uncertainty is considered as the random variable, then Monte Carlo simulation [4] is used. While if it is used 

as the random process, then Karhunen- Loéve (KL) expansion decomposition needs to be applied. Monte Carlo simulation 

is a sampling method which generates the independent random variables based on their distribution. For each of these values, 

the deterministic problem is solved to obtain the solution. Considering random field, Karhunen Loéve (KL) expansion is 

used to discretize the random field by representing it using the random variables and continuous deterministic functions. In 

work by Machado et al. [5], they developed the spectral element method for the rod element free at both the ends. They also 

studied the damage detection capability of SEM under the stochastic condition. They used KL expansion to introduce 

uncertainty into the system. In work by Adhikari and Friswell [6], KL expansion was used for distributed parameter model 

updating. In this work, the parameters to be updated were expressed as the spatially correlated random fields. Ostachowicz 

[7] presented the overall process of equation generation, damage modelling and elastic wave propagation using SEM in a 

review form. In the present study, the spectral element method is used to derive the governing frequencies, and mode shapes 

Eqs. in the frequency domain for a non-uniform structure. This is used for damage detection in stochastic cases. In the present 

study, uncertainty has been introduced into the structural parameters by expressing them as spatially uncorrelated random 

variables. The random fields corresponding to mass and stiffness matrices have been expanded using KL expansion. In this 

paper, first of all, the spectral element method has been used to develop the modal Eqs. in the frequency domain for a non-

uniform section. After this, a study on stochastic spectral analysis of damaged tapered rectangular cross-section rod is 

presented. At the end of this paper, damage detection capability of the SEM under stochastic situation have been explored. 

 

2. Spectral Element Method for Non-Uniform Section 

Let there be both ends free tapered rectangular cross-section rod of length L and width 𝑏. Let the cross-sectional areas 

be 𝐴1 and 𝐴2 at node 1 and node 2, respectively, as shown in Fig. (1). Axial force 𝐹1 and 𝐹2 are acting in axial direction at 

node 1 and node 2 respectively. Again, u1 and u2 are the displacements at node 1 and node 2. 

 

 
Fig.1: Tapered rectangular cross-section rod with both ends free. 

 

Now, taking an elementary strip of length 𝑑𝑥 at a distance 𝑥 from node 1, the area of this elementary strip is given by 

the following equation. 

𝐴𝑥 = 𝐴1 +
(𝐴2 − 𝐴1)𝑥

𝐿
 

(1) 

 
2.1. Spectral Analysis of Undamaged Vibrating Rod 

The undamped equilibrium equation in the frequency domain is given by: 

𝐸𝐴
𝑑2𝑢(𝑥)

𝑑𝑥2
+ 𝜔2𝜌𝐴𝑢(𝑥) = 𝑞(𝑥) 

(2) 

 

where, 𝐴 = cross-section area, 𝜌 = density, 𝐸 = modulus of elasticity, 𝑢 = longitudinal displacement, 𝑞 = distributed load and 

𝜔 = circular frequency. 
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Now, the solution as per Machado et al. [5] of equation (2) is given by, 

 

𝑢(𝑥) = 𝑎1𝑒
−𝜄𝑘𝑥 + 𝑎2𝑒

−𝜄𝑘(𝐿−𝑥) = 𝑠(𝑥, 𝜔)𝑎 (3) 

where, s(x, ω)= {е-ikx  е-ik(L-x) } , a= {
𝑎1

𝑎2

 }, 𝑎1 and 𝑎2 are constants, k = ω/c = wavenumber corresponding to the longitudinal 

wave propagation, and c = √E/ρ  = phase speed. Now, the spectral nodal displacements of the rod are given by: 

𝑑 = {
𝑢1

𝑢2
} = {

𝑢(0)
𝑢(𝐿)

} = [
𝑠(0,𝜔)
𝑠(𝐿, 𝜔)

] 𝑎 = 𝐺(𝜔)𝑎 
(4) 

Here, 

𝐺(𝜔) = [ 1 𝑒−𝜄𝑘𝐿

𝑒−𝜄𝑘𝐿 1
] 

(5) 

Substituting equation (4) into Equation (3) the deformation at any point in the rod is obtained as follows: 

u(x, ω)= s(x, ω) 𝐺−1(𝜔)𝑑={ g1  g2} d (6) 

Consider an undamaged tapered rectangular cross-section rod with one end fixed and another end free, as shown in Fig. 

(2). Rod with one end free and other end fixed will have 𝑢1 equal to zero while 𝑢2 will have nonzero value and hence the 

corresponding reduced dimension of 𝐺−1(𝜔) will be obtained by eliminating its first column, i.e. 𝐺−1(𝜔) will have a 

dimension of 2 × 1 and it is denoted by 𝐺𝑛
−1(𝜔). 

 

(i) 
 

(ii) 
Fig. 2: (i) Undamaged tapered rectangular cross-section rod with one end fixed and another end free, (ii) Damaged tapered rectangular 

cross-section rod with one end fixed and another end free 

 

The displacement in generalized form is given by 𝑢(𝑥) = 𝑔2(𝑥)𝑢2 =
𝑠𝑖𝑛(𝑘𝑥)

𝑠𝑖𝑛(𝑘𝐿)
𝑢2. The stiffness matrix and mass matrix 

are given by following Eqs. 

𝐾𝑁𝑢(𝜔) = 𝐸𝛤𝑛
𝑇(𝜔) [∫ 𝐴𝑥𝑠′

𝑇(𝑥, 𝜔)𝑠′(𝑥, 𝜔)𝑑𝑥
𝐿

0

] 𝛤𝑛(𝜔)

= 𝐾𝑁𝑢11

 

(7) 

𝑀𝑁𝑢(𝜔) = 𝜌𝛤𝑛
𝑇(𝜔) [∫ 𝐴𝑥𝑠

𝑇(𝑥, 𝜔)𝑠(𝑥, 𝜔)𝑑𝑥
𝐿

0

] 𝛤𝑛(𝜔)

= 𝑀𝑁𝑢11

 

(8) 

Where,(•)′ represents the first derivative w.r.t x, 𝛤𝑛(𝜔) = 𝐺𝑛
−1(𝜔) , 𝑠(𝑥, 𝜔) is similar to one given earlier, while 𝐾𝑁𝑢11

 and 

𝑀𝑁𝑢11
 can be referred to Machado et al.[4]. 

 
2.2. Spectral Analysis of Damaged Tapered Rod 

Consider a damaged tapered rectangular cross-section rod with one end fixed and another end free, as shown in Fig. (2). 

Also, assume that there is a single edge notch crack of depth 𝑎 at length 𝐿1 from node 1, as shown in Fig. (2). The damaged 



 

 

 

 

301-4 

rod is formulated as a function of crack flexibility (𝛩) by using Castigliano’s theorem and the laws of fracture mechanics. 

Now, for damaged rod, the solution of equation (2) is given in two parts. One part is, for the length between fixed end to 

crack position, i.e. left part of the crack and another part is between a crack position to free end. 

The solution by Machado et al. [5], is given by following Eqs. 

 

𝑢𝐿(𝑥) = 𝑎1𝑒
−𝜄𝑘𝑥 + 𝑎2𝑒

−𝜄𝑘(𝐿1−𝑥)  (0 ≤ 𝑥 ≤ 𝐿1)

= 𝑠𝐿(𝑥, 𝜔)𝑎𝐿
 

(9a) 

where, 

𝑠𝐿(𝑥, 𝜔)= [е-ikx  е-ik(L1-x) ] , and aL= {
𝑎1

𝑎2

 }  (9b) 

 

𝑢𝑅(𝑥) = 𝑎3𝑒
−𝜄𝑘𝑥 + 𝑎4𝑒

−𝜄𝑘(𝐿−𝑥)  (𝐿1 ≤ 𝑥 ≤ 𝐿)

= 𝑠𝑅(𝑥, 𝜔)𝑎𝑅
 

 

 (9c) 

where 𝑠𝑅(𝑥, 𝜔)= [е-ikx  е-ik(L-x) ] , and aR = {
𝑎3

𝑎4

 }. Now, the Eqs. (9a-9c) in the combined form are given by the following 

equation. 

{
𝑢𝐿(𝑥)
𝑢𝑅(𝑥)

} = [
𝑠𝐿(𝑥, 𝜔) 0

0 𝑠𝑅(𝑥, 𝜔)
] {

𝑎𝐿

𝑎𝑅
} = 𝑠𝑑(𝑥, 𝜔)𝑎𝑑 

(10) 

Here, 𝑎𝑑 is calculated by using the following boundary and compatibility conditions [5]: 

a) 𝑢𝐿(0) = 𝑢1; b) 𝑢𝑅(𝐿1) − 𝑢𝐿(𝐿1) = 𝛩
𝜕𝑢𝐿(𝐿1)

𝜕𝑥
; 

c) 
𝜕𝑢𝐿(𝐿1)

𝜕𝑥
=

𝜕𝑢𝑅(𝐿1)

𝜕𝑥
; d) 𝑢𝑅(𝐿) = 𝑢2. 

Now, from Eqs. (9a-9c) and boundary conditions the following Eqs. can be obtained. 

 

[

1 𝑒−𝜄𝑘𝐿1 0 0
(𝜄𝑘𝛩 − 1)𝑒−𝜄𝑘𝐿1 −(𝜄𝑘𝛩 + 1) 𝑒−𝜄𝑘𝐿1 𝑒−𝜄𝑘(𝐿−𝐿1)

−𝜄𝑘𝑒−𝜄𝑘𝐿1 𝜄𝑘 𝜄𝑘𝑒−𝜄𝑘𝐿1 −𝜄𝑘𝑒−𝜄𝑘(𝐿−𝐿1)

0 0 𝑒−𝜄𝑘𝐿 1

]{

𝑎1

𝑎2

𝑎3

𝑎4

} = {

𝑢1

0
0
𝑢2

} 

        (11) 

⇒ 𝐺𝑑𝑎𝑑 = 𝑢𝑑 ⇒ 𝑎𝑑 = 𝐺𝑑
−1𝑢𝑑 (12) 

Rod with both ends free condition will have nonzero 𝑢1 and 𝑢2 and hence the corresponding reduced dimension of 𝐺𝑑
−1 

will be obtained by eliminating its second and third column, i.e. 𝐺𝑑
−1 will have a dimension of 4 × 2 and it is denoted by 

𝐺𝑑1

−1. By substituting Equation (12) into equation (10), 

 

{
𝑢𝐿(𝑥)
𝑢𝑅(𝑥)

} = [
𝑠𝐿(𝑥, 𝜔) 0

0 𝑠𝑅(𝑥, 𝜔)
] 𝐺𝑑1

−1𝑢𝑑 = [
𝑔11 𝑔12

𝑔21 𝑔22
] {

𝑢1

𝑢2
} 

 (13) 

where, 𝑔11, 𝑔12, 𝑔21 and 𝑔22 are given by following Eqs. 

 

𝑔11=

𝑐𝑜𝑠 (𝑘𝐿1) + 𝑖𝑠𝑖𝑛(𝑘 𝐿1))(−𝑖𝑐𝑜𝑠(𝑘𝐿 – 𝑘 𝐿1)+ 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿 – 𝑘 𝐿1) +
 𝑠𝑖𝑛(𝑘𝐿 – 𝑘 𝐿1)(𝑐𝑜𝑠(𝑘𝑥) + 𝑐𝑜𝑠(𝑘 𝐿1 – 𝑘𝑥) – 𝑖𝑠𝑖𝑛(𝑘𝑥) – 𝑖𝑠𝑖𝑛(𝑘 𝐿1 – 𝑘𝑥) 

 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿) + 𝛩𝑘𝐶𝑜𝑠(𝑘𝐿 – 2𝑘𝐿1) + 2𝑠𝑖𝑛(𝑘𝐿)
 

 

   (14) 

𝑔12 =
2𝑠𝑖𝑛(𝑘𝑥)

𝛩𝑘𝑐𝑜𝑠(𝑘𝐿) + 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿 − 2𝑘𝐿1) + 2𝑠𝑖𝑛(𝑘𝐿)
 

 

(15) 
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𝑔21=

𝑐𝑜𝑠 (𝑘 𝐿1) + 𝑖𝑠𝑖𝑛(𝑘𝐿1))(−𝑖𝑐𝑜𝑠(𝑘𝐿 − 𝑘𝐿1) + 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿 − 𝑘𝐿1) +
 𝑠𝑖𝑛 (𝑘𝐿 − 𝑘𝐿1)(𝑐𝑜𝑠 (𝑘𝑥) + 𝑐𝑜𝑠(𝑘𝐿1 − 𝑘𝑥) − 𝑖𝑠𝑖𝑛(𝑘𝑥) − 𝑖𝑠𝑖𝑛(𝑘𝐿 − 𝑘𝑥)

 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿) + 𝛩𝑘𝐶𝑜𝑠(𝑘𝐿 − 2𝑘𝐿1) + 2𝑠𝑖𝑛(𝑘𝐿)
 

 

(16) 

𝑔22 =
𝛩𝑘𝑐𝑜𝑠(𝑘𝑥) + 𝛩𝑘𝑐𝑜𝑠(2𝑘𝐿1 − 𝑘𝑥) + 2𝑠𝑖𝑛(𝑘𝑥)

𝛩𝑘𝑐𝑜𝑠(𝑘𝐿) + 𝛩𝑘𝑐𝑜𝑠(𝑘𝐿 − 2𝑘𝐿1) + 2𝑠𝑖𝑛(𝑘𝐿)
 

(17) 

  
For a rod with one end fixed and another end free 𝑢1 is equal to zero, while 𝑢2 will have nonzero value and hence the 

corresponding reduced dimension of 𝐺𝑑
−1(𝜔) will be obtained by eliminating its first, second and third column, i.e. 𝐺𝑑

−1(𝜔) 

will have a dimension of 4 × 1 and it is denoted by 𝐺𝑑2

−1(𝜔). 

The stiffness matrix and mass matrix are given by following Eqs. 

 

𝐾𝑁𝑑(𝜔) = 𝐸𝛤𝑑
𝑇(𝜔)

[
 
 
 
 ∫ 𝐴𝑥𝑠′𝐿

𝑇(𝑥, 𝜔)𝑠′𝐿(𝑥, 𝜔)𝑑𝑥
𝐿1

0

0

0 ∫ 𝐴𝑥𝑠′𝑅
𝑇(𝑥, 𝜔)𝑠′𝑅(𝑥, 𝜔)𝑑𝑥

𝐿

𝐿1 ]
 
 
 
 

𝛤𝑑(𝜔)

= [𝐾𝑁𝑑11]

 

 

(18) 

𝑀𝑁𝑑(𝜔) = 𝜌𝛤𝑑
𝑇(𝜔)

[
 
 
 
 ∫ 𝐴𝑥𝑠𝐿

𝑇(𝑥, 𝜔)𝑠𝐿(𝑥, 𝜔)𝑑𝑥
𝐿1

0

0

0 ∫ 𝐴𝑥𝑠𝑅
𝑇(𝑥, 𝜔)𝑠𝑅(𝑥, 𝜔)𝑑𝑥

𝐿

𝐿1 ]
 
 
 
 

𝛤𝑑(𝜔)

= [𝑀𝑁𝑑11]

 

 

(19) 

where 𝛤𝑑(𝜔) = 𝐺𝑑2
−1, and 𝐾𝑁𝑑11

 and 𝑀𝑁𝑑11
 can be referred from Machado et al. [5]. 

 

3. Stochastic Spectral Element Approach for Non-Uniform Section 
3.1. Stochastic Spectral Element Analysis of Undamaged Tapered Rod with One End Fixed and another End 
Free. 

To obtain the stiffness and mass matrices associated with the random components, for each 𝒋 (i.e. uncorrelated random 

variable), matrices are obtained as follows [8]. 

 

K(ω, θ) = KNu(ω) + ∆K (ω, θ);  M(ω, θ) = MNu (ω) + ∆M(ω, θ) (20) 

where 𝐾𝑁𝑢(𝜔) and 𝑀𝑁𝑢(𝜔) are the deterministic part. Also, 𝛥𝐾(𝜔, 𝜃) and 𝛥𝑀(𝜔, 𝜃) are the random part of the stiffness 

and mass matrices respectively which is given by using KL expansion and are expressed as, 

 

𝛥𝐾(𝜔, 𝜃) = 𝜖1 ∑𝜉𝐾𝑗

𝑁

𝑗=1

(𝜃)√𝜆𝐾𝑗𝐾𝑗(𝜔) 

(21) 

𝛥𝑀(𝜔, 𝜃) = 𝜖2 ∑𝜉𝑀𝑗

𝑁

𝑗=1

(𝜃)√𝜆𝑀𝑗𝑀𝑗(𝜔) 

(22) 
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where N is the number of terms kept after truncation of the infinite series in the KL expansion, while 𝜉𝐾𝑗(𝜃) and 𝜉𝑀𝑗(𝜃) are 

uncorrelated Gaussian random variables with zero mean and unit standard deviation. 

The matrices 𝐾𝑗(𝜔) and 𝑀𝑗(𝜔) are written as 

 

𝐾𝑗(𝜔) = 𝐸𝛤𝑇(𝜔) [∫ 𝑓𝐾𝑗

𝐿

0

(𝑥)𝐴𝑥𝑠′
𝑇(𝑥, 𝜔)𝑠′(𝑥, 𝜔)𝑑𝑥] 𝛤(𝜔) 

(23) 

𝑀𝑗(𝜔) = 𝜌𝛤𝑇(𝜔) [∫ 𝑓𝑀𝑗

𝐿

0

(𝑥)𝐴𝑥𝑠
𝑇(𝑥, 𝜔)𝑠(𝑥, 𝜔)𝑑𝑥]𝛤(𝜔) 

 

(24) 

where, 𝑠(𝑥, 𝜔) is similar to the deterministic part. The random element of the stiffness and mass matrices are obtained by 

substituting the following values 

 

{𝑓𝑗}(𝑥)=
{𝑐𝑜𝑠({𝜔𝑘}𝑗 𝑥)}

√{𝑎+
{𝑠𝑖𝑛(2{𝜔𝑘}

𝑗
𝑎)}

{2{𝜔𝑘}
𝑗
}

}

       𝑗 = 1,3,5,… .. 
 

(25) 

and 

in Eqs. (23) and (24). 

The stiffness and mass matrices for odd 𝑗 are given by 

𝐾𝑗
𝑜𝑑𝑑(𝜔) =

𝐸

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

𝛤𝑇(𝜔) [∫ 𝐴𝑥

𝐿

0

𝑐𝑜𝑠(𝜔𝑘𝑗
𝑥)𝑠′𝑇(𝑥, 𝜔)𝑠′(𝑥, 𝜔)𝑑𝑥]𝛤(𝜔)

=
𝐸

√𝑎 +
𝑠𝑖𝑛(𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[𝐾𝑜11]

 

 

 

(27) 

𝑀𝑗
𝑜𝑑𝑑(𝜔) =

𝜌

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

𝛤𝑇(𝜔) [∫ 𝐴𝑥

𝐿

0

𝑐𝑜𝑠(𝜔𝑘𝑗
𝑥)𝑠𝑇(𝑥, 𝜔)𝑠(𝑥, 𝜔)𝑑𝑥] 𝛤(𝜔)

=
𝜌

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[𝑀𝑜11]
. 

 

(28) 

The stiffness and mass matrices for even 𝑗 are given by 

𝐾𝑗
𝑒𝑣𝑒𝑛(𝜔) =

𝐸

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

𝛤𝑇(𝜔) [∫ 𝑠
𝐿

0

𝑖𝑛(𝜔𝑘𝑗
𝑥)𝐴𝑥𝑠′

𝑇(𝑥, 𝜔)𝑠′(𝑥, 𝜔)𝑑𝑥]𝛤(𝜔)

=
𝐸

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[𝐾𝑒11]

 

(29) 

{𝑓𝑗}(𝑥)=
{𝑠𝑖𝑛({𝜔𝑘}𝑗 𝑥)}

√{𝑎−
{𝑠𝑖𝑛(2{𝜔𝑘}

𝑗
𝑎)}

{2{𝜔𝑘}
𝑗
}

}

       𝑗 = 2,4,6,… .. 
 

(26) 
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𝑀𝑗
𝑒𝑣𝑒𝑛(𝜔) =

𝜌

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

𝛤𝑇(𝜔) [∫ 𝑠
𝐿

0

𝑖𝑛(𝜔𝑘𝑗
𝑥)𝐴𝑥𝑠

𝑇(𝑥, 𝜔)𝑠(𝑥, 𝜔)𝑑𝑥] 𝛤(𝜔)

=
𝜌

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[𝑀𝑒11]
 

(30) 

where, 𝛤(𝜔) is given in section 2.1. The expression of the elements, 𝐾𝑜11
 , 𝑀𝑜11

 , 𝐾𝑒11
 and 𝑀𝑒11

 used in the above four Eqs. 

(27) to (30) can be referred to Machado et al.[5]. The stochastic spectral undamaged stiffness and mass matrices, 𝐾(𝜔, 𝜃) 

and 𝑀(𝜔, 𝜃), are obtained by substituting Eqs. (27) to (30) into the Eqs. (21) and (22) and then in the Eqs. (20). 

 
3.2 Stochastic Spectral Element Analysis Of Damaged Tapered Rod 

The stiffness and mass matrices for a non-uniform damaged rod with one end fix and another end free corresponding to 

the two eigenfunctions defined in Eqs. (25) and (26), are given by the following equations [8] 

 

Kd (ω, θ) = KNd(ω) + ∆Kd (ω, θ); Md (ω, θ) = MNd (ω) + ∆Md (ω, θ) 
 

(31) 

where 𝐾𝑁𝑑(𝜔) and 𝑀𝑁𝑑(𝜔) are similar to the deterministic part, given in Eqs. (18) and (19) respectively while 𝛥𝐾𝑑(𝜔, 𝜃) 

and 𝛥𝑀𝑑(𝜔, 𝜃) are the random part of the stiffness and mass matrices which is given by using Karhunen Loéve expansion 

and is expressed as 

𝛥𝐾𝑑(𝜔, 𝜃) = 𝜖1 ∑𝜉𝐾𝑗

𝑁

𝑗=1

(𝜃)√𝜆𝐾𝑗𝐾𝑗𝑑(𝜔) 

 

(32) 

where N is the number of terms kept after truncation of the infinite series in the Karhunen Lo𝑒́ve expansion while 𝜉𝐾𝑗(𝜃) 

and 𝜉𝑀𝑗(𝜃) are uncorrelated Gaussian random variables with zero mean and unit standard deviation. The equation of 

deformation for left and right parts of the damaged rod is different, and hence the different limits of integration need to be 

considered for both sides. 

The matrices 𝐾𝑗𝑑
(𝜔) and 𝑀𝑗𝑑

(𝜔) are given by 

𝐾𝑗𝑑
(𝜔) = 𝐸𝛤𝑑

𝑇(𝜔) [
𝑆𝑘𝐿 0
0 𝑆𝑘𝑅

] 𝛤𝑑(𝜔) 

 

(34) 

𝑀𝑗𝑑
(𝜔) = 𝜌𝛤𝑑

𝑇(𝜔) [
𝑆𝑚𝐿 0
0 𝑆𝑚𝑅

] 𝛤𝑑(𝜔) 

 

(35) 

where, 𝛤𝑑(𝜔) is given in section 2.2 and the matrices 𝑆𝑘𝐿 , 𝑆𝑘𝑅 , 𝑆𝑚𝐿 and 𝑆𝑚𝑅 are given by following equation. 

𝑆𝑘𝐿 = ∫ 𝑓𝐾𝑗

𝐿1

0

(𝑥)𝐴𝑥𝑠′𝐿
𝑇
(𝑥, 𝜔)𝑠′𝐿(𝑥, 𝜔)𝑑𝑥 

 

(36) 

𝑆𝑘𝑅 = ∫ 𝑓𝐾𝑗

𝐿

𝐿1

(𝑥)𝐴𝑥𝑠′𝑅
𝑇
(𝑥, 𝜔)𝑠′𝑅(𝑥, 𝜔)𝑑𝑥 

 

(37) 

𝛥𝑀𝑑(𝜔, 𝜃) = 𝜖2 ∑𝜉𝑀𝑗

𝑁

𝑗=1

(𝜃)√𝜆𝑀𝑗𝑀𝑗𝑑(𝜔) 

 

(33) 
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𝑆𝑚𝐿 = ∫ 𝑓𝑀𝑗

𝐿1

0

(𝑥)𝐴𝑥𝑠𝐿
𝑇(𝑥, 𝜔)𝑠𝐿(𝑥, 𝜔)𝑑𝑥 

 

(38) 

𝑆𝑚𝑅 = ∫ 𝑓𝑀𝑗

𝐿

𝐿1

(𝑥)𝐴𝑥𝑠′𝑅
𝑇
(𝑥, 𝜔)𝑠′𝑅(𝑥, 𝜔)𝑑𝑥 

(39) 

where, 𝑠𝐿(𝑥, 𝜔) and 𝑠𝑅(𝑥, 𝜔) are similar to the deterministic part which are given in Eqs. (9a) and (9c), respectively. 

The matrices 𝑆𝑘𝐿 , 𝑆𝑘𝑅 , 𝑆𝑚𝐿 and 𝑆𝑚𝑅 for odd and even 𝑗 are obtained by substituting Eqs. (25) and (26) in Eqs. (36) to 

(39). 

For odd 𝑗 

𝑆𝑘𝐿
𝑜𝑑𝑑(𝜔) =

𝐸

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑘𝐿𝑜11

𝑆𝑘𝐿𝑜12

𝑆𝑘𝐿𝑜21
𝑆𝑘𝐿𝑜22

] 
(40) 

𝑆𝑘𝑅
𝑜𝑑𝑑(𝜔) =

𝐸

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑘𝑅𝑜11

𝑆𝑘𝑅𝑜12

𝑆𝑘𝑅𝑜21
𝑆𝑘𝑅𝑜22

] 
(41) 

𝑆𝑚𝐿
𝑜𝑑𝑑(𝜔) =

𝜌

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑚𝐿𝑜11

𝑆𝑚𝐿𝑜12

𝑆𝑚𝐿𝑜21
𝑆𝑚𝐿𝑜22

] 
(42) 

𝑆𝑚𝑅
𝑜𝑑𝑑(𝜔) =

𝜌

√𝑎 +
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑚𝑅𝑜11

𝑆𝑚𝑅𝑜12

𝑆𝑚𝑅𝑜21
𝑆𝑚𝑅𝑜22

] 
(43) 

For even 𝑗 

𝑆𝑘𝐿
𝑒𝑣𝑒𝑛(𝜔) =

𝐸

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑘𝐿𝑒11

𝑆𝑘𝐿𝑒12

𝑆𝑘𝐿𝑒21
𝑆𝑘𝐿𝑒22

] 

 

(44) 

𝑆𝑘𝑅
𝑒𝑣𝑒𝑛(𝜔) =

𝐸

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑘𝑅𝑒11

𝑆𝑘𝑅𝑒12

𝑆𝑘𝑅𝑒21
𝑆𝑘𝑅𝑒22

] 

 

(45) 

𝑆𝑚𝐿
𝑒𝑣𝑒𝑛(𝜔) =

𝜌

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑚𝐿𝑒11

𝑆𝑚𝐿𝑒12

𝑆𝑚𝐿𝑒21
𝑆𝑚𝐿𝑒22

] 

 

(46) 
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𝑆𝑚𝑅
𝑒𝑣𝑒𝑛(𝜔) =

𝜌

√𝑎 −
𝑠𝑖𝑛(2𝜔𝑘𝑗

𝑎)

2𝜔𝑘𝑗

[
𝑆𝑚𝑅𝑒11

𝑆𝑚𝑅𝑒12

𝑆𝑚𝑅𝑒12
𝑆𝑚𝑅𝑒22

] 

 

(47) 

 

where, 𝑆𝑘𝐿𝑜𝑖𝑗
, 𝑆𝑚𝐿𝑜𝑖𝑗

, 𝑆𝑘𝑅𝑜𝑖𝑗
, 𝑆𝑚𝑅𝑜𝑖𝑗

, 𝑆𝑘𝐿𝑒𝑖𝑗
, 𝑆𝑚𝐿𝑒𝑖𝑗

, 𝑆𝑘𝑅𝑒𝑖𝑗
 and 𝑆𝑚𝑅𝑒𝑖𝑗

 of these eight matrices can be referred 

from Machado et al.[5]. 

Now, the matrices 𝐾𝑗𝑑
(𝜔) and 𝑀𝑗𝑑

(𝜔) for odd and even 𝑗 are obtained by substituting Eqs. (40) to (47) in Eqs. (34) and 

(35). The random part of the stiffness and mass matrices for different 𝑗 are obtained by substituting Eqs. (34) and (35) in 

Eqs. (32) and (33). 

 

4. Stochastic Crack Localization 
Material and geometrical properties used for calculation purpose are: 𝐸 = 200 𝐺𝑃𝑎, 𝜌 = 7850 𝑘𝑔/𝑚3, 𝐿 = 1 𝑚, 𝑏 =

0.01 𝑚, 𝐴1 = 0.0005 𝑚2 and 𝐴2 = 0.0003 𝑚2. For the stochastic case, the properties used are: 𝜖1 = 𝜖2 = 0.01, 𝑎 = 2𝑚 

and 𝑁 = 50. Also 𝜉𝐾𝑗 and 𝜉𝑀𝑗 has taken as a set of 50 random variables with zero mean and unit standard deviation. 

Undamaged mode shape for the first three modes is shown in Fig. (3). 

 
(i) 

 
(ii) 

Fig. 3: (i) Undamaged mode shape for the stochastic case, (ii) Damaged mode shape for stochastic 

the case for crack flexibility using stiffness degradation 
 

Let us consider a damage at 0.7𝑚 from fixed end with a stiffness degradation of 20%. Corresponding to this condition, 

the damaged mode shape is shown in Fig. (3). 

 
Fig. 4: Difference between first mode shape of damaged and undamaged state for 20% stiffness degradation 
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Fig. 4 shows the difference between first mode shape of the damaged and undamaged state, [9] in which it can be seen 

clearly that it is abruptly changing at the assumed crack position, i.e. there is damage at 0.7𝑚 from fixed end. 

 

5. Conclusion 
Spectral element method has been briefly explored in this paper for the non-uniform section. Stiffness and mass matrices 

for both damaged and undamaged case for the non-uniform section have been derived. The mass and the stiffness matrix 

have been expanded for the stochastic case using KL expansion decomposition. Eigenvalue analysis has been performed, 

and mode shapes for the damaged and undamaged stochastic case have been presented. Operating in the frequency domain 

the eigenvalues obtained are the exact solutions. Damaged localization has done after taking the difference between damaged 

and undamaged mode shape corresponding to the first mode. The first mode shape corresponding to the stochastic case have 

been plotted by taking an average of various uncertain mode shapes. The result shows that the method is successfully 

localizing the damage for the stochastic case. SEM helps to represent the whole structure as a single element. Further study 

is required to check its applicability in beams and frames. 
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