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Abstract - To propose an effective optimization-based model updating and damage detection method, not only a damage-sensitive cost 

function is required, but also a strong and stable optimization algorithm should be employed. This paper is aimed at presenting a method 

in which both the mentioned challenges are considered for damage identification in cable-stayed bridges. For this purpose, the damage 

detection problem is formulated as a modal flexibility-based model updating approach and it is solved utilizing Democratic Particle 

Swarm Optimization (DPSO) algorithm. DPSO is a modified version of the standard PSO algorithm, which is developed for presenting 

a tackle the drawbacks of the original PSO algorithm in terms of increasing the algorithm’s speed as well as decreasing the premature 

convergence rate. The efficiency of the method is demonstrated by studying different damage patterns on the numerical model of a cable-

stayed bridge. Almost all the obtained results indicate the good performance of the proposed method for the damage localization and 

quantification of the cable-stayed bridge using only the first several modes’ data. 
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1. Introduction 
Damage occurrence is inevitable in all structural systems such as buildings and bridges during their lifespan. In the past 

decades, different types of damage have been observed and recorded in the engineering structures, which resulted in major 

financial losses. In most cases, damage can be detected and modified by preliminary studies of the current condition of the 

structures, and they can be protected against the spread of damage or collapse. Damage can be happened due to various 

reasons such as environmental erosion, fatigue, severe and sudden shocks derived from earthquakes, etc.[1] To identify 

damage levels, evaluate, and estimate the lifespan of structures, structural health monitoring (SHM) has been utilized. 

Damage localization and quantification programs are the main parts of SHM plans as basic data. SHM has been performed 

in both local and global methods. Due to limitations and high expenses of local methods for damage diagnosis, the global 

methods provide researchers to do SHM based on properties of structures and their vibration characteristics such as natural 

frequencies and mode shape vectors. Indeed, any changes in physical characteristics of structures such as changes in 

structural stiffness can be used to detect damage in them. The main goals of global methods of damage detection are 

identifying damage at the earliest stage, locating damage precisely, quantifying the severity of the damage, and predicting 

the remaining lifetime of the structure. Limited studies have been reported on utilizing SHM in cable-stayed bridges in the 

following.[2] Ni et al studied the possibility of using measured dynamic characteristics of the bridge for damage 

identification. The modal flexibility of matrices of the three-dimensional finite element model of the bridge was extracted 

and the relative flexibility change between the undamaged and damaged states was formulated as an index to localize damage. 
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In addition, the effects of temperature alternation and traffic loading were regarded.[3] The temperature impacts on 

modal parameters of a cable-stayed bridge were assessed by Li et al. They showed that the temperature does not affect 

mode shapes considerably, while it influences the natural frequency of a cable-stayed bridge.[4] Talebinejad et al 

employed four damage detection methods on the Quincy cable-stayed bridge: Enhanced Coordinate Modal Assurance 

Criterion, Damage Index Method, Mode Shape Curvature Method, and Modal Flexibility Index Method were used to 

locate damage. Also, they extracted mode shapes and natural frequencies of damaged and undamaged structures by 

using ANSYS numerical model of the bridge. The results revealed the advantages and disadvantages of damage 

identification methods.[5] The probabilistic neural network based on simulated noisy modal data was used for damage 

localization in the cable-stayed 

Ting Kau bridge by Zhou et al. They found that in noise levels less than 0.1, the probability of identifiability can be 

greater than 85%.[6] Parka et al investigated the effects of changes in wind velocity and traffic-induced on dynamics 

characteristics of Ting Kau bridge and analyzed the relationship between wind velocity and modal parameters.[7] 

Casciati and Elia focused on identifying damage in a cable-stayed bridge in Italy by localizing reduction in stiffness and 

using artificial bee colony and firefly algorithms for optimization issues. They compared both algorithms in terms of 

convergence and computational burden.[8] Due to the large scale and complexity of the cable-stayed bridges, and the 

need for testing cost-effective methods for damage identification based on structural vibration, it is vital to present and 

examine different methods on these structures. For this study, a two-dimensional cable-stayed bridge was selected to 

identify damage by defining the damage quantification as a updating model approach with modal data, solving the 

problem by the Democratic Particle Swarm Optimization (DPSO) algorithm, and considering a cost function.  

 

2. Methodology 
2.1. Optimization Algorithm 

Democratic Particle Swarm Optimization (DPSO) introduced by Kaveh and Zolghadr [9] was used as an 

optimization algorithm in this paper. DPSO is an enhanced version of the standard Particle Swarm Optimization (PSO) 

algorithm suggested by Kennedy and Eberhart[10], which had been inspired by the social behavior of animals such as 

insects swarming and birds flocking. PSO contains a group of particles that travel in the multi-dimensional search space 

randomly to find better positions with a velocity. Gradually, the particles converge to sub-optimal solution by updating 

their location each time. Although PSO has been used in different fields of science, it has some drawbacks: PSO has the 

inability of proper exploration, and this can lead to convergence easily. Thus, DPSO has been introduced to fix the PSO 

disadvantages. The main difference between PSO and DPSO is that the particles share their information in DPSO 

appropriately, in addition to being motivated by their preference and the best particles’ suggestion.[11] It should be 

noted that using DPSO instead of PSO can improve the speed of the algorithm. The velocity of the DPSO is shown 

hereunder: 

 

                                𝜈𝑖,𝑗
𝑘+1 = 𝜒[𝑤𝜈𝑖,𝑗

𝑘 + 𝑐1𝑟1(𝑥𝑙𝑏𝑒𝑠𝑡𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) + 𝑐3𝑟3𝑑𝑖,𝑗
𝑘 ]                  (1) 

  
where 𝑤 is the inertia weight for previous iteration’s velocity and 𝜒 is a parameter for dissuading divergence 

behavior shown as Eq. (2), respectively.                                                                                                                

                                                                      𝜒 =
1.6

|2−(𝑐1+𝑐2)−√(𝑐1+𝑐2)2−4(𝑐1+𝑐2)|
                                                             (2)                                

𝜈𝑖,𝑗
𝑘  is the velocity of variable j of the i-th particle, 𝑥𝑖,𝑗

𝑘  is the current value of the j-th variable of the i-th particle, 

𝑥𝑙𝑏𝑒𝑠𝑡𝑖,𝑗
𝑘  is the best value of the j-th variable ever found by i-th particle, 𝑥𝑔𝑏𝑒𝑠𝑡𝑗

𝑘 the best value of the variable j 

experienced by the whole swarm so far. Eq. (1) includes three random constants named 𝑟1, 𝑟2, and 𝑟3; these constant 

parameters are distributed uniformly in the range of  (0,1). 𝑐1 and 𝑐2 are describing a particle’s confidence rate in itself 

and the swarm, respectively. c3 is a parameter that controls the weight of the democratic vector. 𝑑𝑖,𝑗
𝑘  is the j-th variable 
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of the vector D for the i-th particle. The vector D shows the democratic impact of the other particles of the swarm on the 

movement of the i-th particle. The vector D has been represented as below: 

                                                                      𝐷𝑖 = ∑ 𝑄𝑖𝑘
𝑛
𝑘=1 (𝑋𝑘 − 𝑋𝑖)                      (3) 

 

in which 𝑋 is the particle’s position vector and  𝑄𝑖𝑘 is the weight of the k-th particle in the democratic movement of the 

i-th particle and is obtained by the Eq. (4) hereunder: 

                                                                                                                                                               

                                                                         𝑄𝑖𝑘 =
𝐸𝑖𝑘

𝑜𝑏𝑗𝑏𝑒𝑠𝑡
𝑜𝑏𝑗(𝑘)

∑ 𝐸𝑖𝑗
𝑜𝑏𝑗𝑏𝑒𝑠𝑡
𝑜𝑏𝑗(𝑗)

𝑛
𝑗=1

                                                                     (4) 

 

where obj is the objective function value, and 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 is the value of the objective function for the best particle in the current 

iteration. X is the position vector of the particle; E is the eligibility parameter. To minimize, problem E can be defined as : 

                                                                              

                                                𝐸𝑖𝑘 = {
1                 

𝑜𝑏𝑗(𝑘)−𝑜𝑏𝑗(𝑖)

𝑜𝑏𝑗𝑤𝑜𝑟𝑠𝑡−𝑜𝑏𝑗𝑏𝑒𝑠𝑡
> 𝑟𝑎𝑛𝑑 ∪ 𝑜𝑏𝑗(𝑘) < 𝑜𝑏𝑗(𝑖)

0          𝑒𝑙𝑠𝑒                                                                              
                             (5)    

 

where 𝑜𝑏𝑗𝑤𝑜𝑟𝑠𝑡 stands for the values of the objective function for the worst particles, and 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 is the values of the objective 

function for the best particles in the current iteration. After defining the velocity vector by Eq. (1), the new positions of the 

particles in the DPSO algorithm are determined as: 

                                                                                                                                                                                      

                                                                             𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝜈𝑖,𝑗
𝑘+1                                                                  (6) 

 

in which the time interval is equal to 1.0 and therefore the velocity vector can be added to the position vector. 

 
2.2. Damage Detection Method 

In this section, details of the proposed method for structural damage identification and quantification are presented. 

According to the free vibration equation of a system with Ne elements and N degrees of freedom, structural modal 

information (i.e. modal frequencies and mode shapes) can be obtained using Eq. (7):  
                                                                                                                                                                                            

                                                                                 𝐾𝜑𝑖 = 𝜔𝑖
2𝑀𝜑𝑖                                                                      (7) 

 

where M is global structural mass and K is stiffness matrices. Also, 𝝎𝒊 and 𝝋𝒊 are the natural frequency and mass-normalized 

mode shape vector for the i-th mode, respectively. Flexibility matrix, F, is interpreted as the inverse of the stiffness matrix, 

which is written by using natural frequencies and normalized mode shape vectors as below: 

 

                                                                                           𝐹 = ΦΛ−1Φ𝑇  (8) 

 

in which, Φ  and  𝚽𝑻 are the Mass-normalized mode shape matrix and its transpose, and 𝚲 is a diagonal matrix that consists 

of the eigenvalues of free vibration problem as Eq. (9): 

                                                                                                                                                                   

                                                                            Λ =

[
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… 0
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Also, the Mass-normalized mode shape matrix is extracted from Eq. (10) as below. Note that I indicates an identity 

matrix. 

  

                                                                                           Φ𝑇𝑀Φ = 𝐼                                                                                (10) 

 

According to the Eq. (8), it can be realized that the flexibility matrix is less dependent on the number of considered 

modes shape in contrast to the stiffness matrix; It means that increasing the number of considered modes can reduce the 

effects of the natural frequencies on computing flexibility matrix.[12] Moreover, according to the mathematical 

properties of the flexibility matrix, the values of the diagonal members of the matrix provide useful and unique 

characteristics for forming the cost function based on “p” first mode shapes of flexibility matrix 𝑭𝒑. Thus, vector Γ is 

defined as Eq. (11): 

 

                                                                1 2, ,..., , ( , )
T

Ne j pF j j                                                       (11) 

  

To estimate damage severities, vector Γ is used to determine the following cost function [13]: 

  

                                                   𝑓(𝑑1, 𝑑2, . . . , 𝑑𝑁𝑒) =∥ 𝛤𝑑 − 𝛤𝑎 ∥= √∑ (𝛤𝑑(𝑖) − 𝛤𝑎(𝑖))2𝑁𝑒
𝑖=1                                               (12) 

 

which ∥ ∥ demonstrates the Euclidean norm, a and d indexes are related to the analytical model with different levels of 

damage (updating model) and the damaged model (monitored structure). Also, 𝑑1,…𝑑𝑁𝑒 are the unknown damage severities 

for element number 1 to Ne. In the analytical model of the damaged structure, the damage is assigned as the reduction in the 

stiffness matrix with unknown damage severities. hence, the stiffness matrix of j-th element in damaged state 𝐸𝑗
𝑑, can be 

considered as below: 

                                                                         𝐸𝑗
𝑑 = (1 − 𝑑𝑗)𝐸𝑗                                                                       (13) 

 

In the equation above, 𝐸𝑗 is the stiffness matrix of  j-th element in undamaged structure and d𝑗 is unknown damage 

ratio for j-th element. Given that damage in each element is considered as a value between zero to 1, the cost function 

of optimizing inverse problem for damage detection can be written as below: 

 

                                                         {
𝐹𝑖𝑛𝑑 𝑑 =  1 2, ,...,

T

Ned d d   → 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶    0 ≤ 𝑑𝑖 ≤ 1                                  
                                           (14) 

 

To solve the aforementioned cost function, the DPSO algorithm is used. 

 
2.3. Numerical Study 

In this section, the efficiency of the proposed method is discussed by studying a two-dimensional cable-stayed 

bridge under different damage patterns. To create and simulate damage, the analytical model of the cable-stayed bridge 

was generated in Opensees [14] based on Karoumi’s study. The bridge geometry is shown in figure 1; also, the properties 

of the materials, sections of the girder and pylons of the bridge are presented in Table 1. 
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Fig. 1: Elevation of the studied cable-stayed bridge [15] with a specific number of each element 

 

 

 
Table 1: Parameters for the cable-stayed bridge model defined in Fig. 1 

 

 
 

 

 

 

 

Table 2: Section properties of cables 

 

 

 

                            

 

 

 

 

 

 

 

For base materials of the cable-stayed bridge, Concrete01 and Steel01 materials provided by Opensees were used for 

concrete and steel elements. ForceBeamColumn element was utilized to model the girder and pylons of the bridge. In 

addition, cables were modelled using Truss elements with the ElasticPPGap material. All the details of the cable elements 

are presented in Table 2 based on the characteristics mentioned in Karoumi’s study.[15] 

Using the damage detection method such as Modal Flexibility Index Method (MFI) and Mode Shape Curvature Method 

(MSC),[12][16] the possible part of the bridge, which is highly probable to the damage occurrence, was estimated. Taking 

advantage of the link between Opensees software and MATLAB, the different values of modulus of elasticity (from $E1 to 

$E13) were defined as variables and were assigned to the modulus of cables (No. 1 to 12) and the deck (No. 13) to create an 

updating model. It should be noted that half of the model was considered variable due to the perfectly symmetrical structure 

of the cable-stayed bridge. The other elements which exist in another half of the bridge participated in the analysis with their 

constant characteristics which were introduced in Tables 1 and 2. To assess the applicability of the method in detecting 

damage of the studied bridge, four damage patterns shown in Table 3 were regarded. The damage pattern (1) consists of a 

single damage scenario, while the rest of them (2),(3), and (4), are multiple damage scenarios in the bridge. 

 

 

 

Elements Modulus of Elasticity (N/m2) Area (m2) Moment Inertia (m4) Weight (t/m) 
Girder 2.0E11 1.11 1.29 19.64 

Pylons above deck level 2.8E10 13.01 34.52 30.65 
Pylons below deck level 2.8E10 18.58 86.31 43.78 

Number of Cables Modulus of Elasticity(N/m2) Area (m2) Length (m) Weight  (t/m) 
1,25 2.0E11 0.0362 158.13 0.398 

2,11,15,24 2.0E11 0.0232 134.66 0.255 
3,10,16,23 2.0E11 0.0204 111.64 0.225 
4,9,17,22 2.0E11 0.0176 89.43 0.194 
5,8,18,21 2.0E11 0.0136 68.80 0.153 
6,7,19,20 2.0E11 0.0113 51.69 0.125 

12,14 2.0E11 0.0372 158.12 0.409 
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Table 3: Damage patterns and their severities in the bridge 

 

 

 

 

 

 

 

 

 

To identify damage according to the suggested method, three first modes of the bridge were used. Having a more 

precise SHM program and consider the impact of various issues such as climate changes, working with old equipment 

or sensors, different levels of random noises (i.e. 0%, 2%, 5%) were added to the input information.[17] Random noises 

were entered by using the following strategy: 

                                                                     𝜔𝑖
𝛼 = 𝜔𝑖 × (1 + 𝜀𝑅)                                                              (15) 

 

where 𝜔𝑖
𝛼is the i-th natural frequency contaminated by random noises, 𝜔𝑖 is the i-th natural frequency without 

considering noises. 𝜀 and R are the noise level and a random value between [-1 1] which is developed by MATLAB. In 

addition, the parameters selected for this algorithm are as follows: number of particles=150, number of iterations=500. 

 

3. The Results and Discussion 
The results related to damage diagnosis and quantification of the studied cable-stayed bridge and the defined damage 

patterns are presented in this part. Considering the symmetrical geometry of the structure and finding the part of the 

bridge where damage is most likely based on the damage index, half of the bridge was examined to identify the severity 

of the damage according to the proposed method. As a result of that, fewer unknowns were involved in solving the 

optimization problem, which results in more accurate responses and higher convergence speeds. As shown in figure 2, 
the method, including the DPSO algorithm with the presented cost function, illustrates an acceptable level of accuracy 

in measuring severities and location of damage in occurring both the single pattern (i.e. the damage pattern 1) and 

multiple damage patterns (i.e. damage patterns 2,3,4). In cases of high random noises, little damage can be observed in 

other (undamaged) elements; this can be rooted in using three first modes for damage identification. If we just considered 

the first mode data of the structure, these effects caused by input noises might not have occurred. Also, using the cost 

function obtained from the higher order of generalized flexibility matrix can eliminate these impacts and provide better 

results.  

 

Damage Pattern 1 Damage Pattern 2 Damage Pattern 3 Damage Pattern 4 

Element Damage Element Damage Element Damage Element Damage 

9 15% 2 25% 2 20% 4 15% 

- - 4 10% 5 20% 7 20% 

- - - - 12 20% 10 10% 

- - - - - - 12 15% 
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Fig. 2. Damage detection results of the studied bridge for the (a) damage pattern 1 (b) damage pattern 2, (c) damage pattern 3, and 

(d) damage pattern 4 with different noise levels 

4.Conclusion 
The main objective of this paper is to propose a method for damage detection in cable-stayed bridges. For this purpose, 

a model updating approach using Democratic Particle Swarm Optimization (DPSO) algorithm was utilized. To create the 

updating model and simulate an analytical model of the bridge, the link between Opensees and MATLAB was used and a 

cost function was defined based on the flexibility matrix to solve the problem. A numerical example of a cable-stayed bridge 

was studied by defining damage as the reduction in the stiffness matrix of damaged elements. Comparing the obtained results 

from the studied four damage patterns with the actual simulated damages indicated that the suggested method has sufficient 

accuracy in detecting damage though noisy inputs are fed. 
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