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Abstract – Circular concrete-filled double steel tubular (CFDST) column offers improved strength and ductility compared to 

conventional concrete-filled steel tubular (CFST) column. This paper reports an experimental program carried out on short CFDST 

columns loaded either concentrically or eccentrically. The test parameters examine the influences of the eccentricity ratio and the 

diameter-to-thickness ratio of the steel tubes. The eccentricity ratio varied from 0 to 1.64 while the diameter-to-thickness ratio of the 

outer and inner steel tubes ranged between  43.8 to 54.75 and 32.57 to 45.6, respectively. It is observed that the tested columns failed in 

a ductile manner, however, an increase of the eccentricity ratio reduces the ultimate loads of the columns remarkably.      

 

Keywords: Concrete-filled double steel tubes; eccentric compression; stub columns; composite columns; ultimate 

strength. 

 

 

1. Introduction 
The circular concrete-filled double steel tubular (CFDST) column as shown in Fig. 1 is a high-performance composite 

column that is used to carry large axial load in high-rise composite buildings and bridge piers. Owing to the encasement of 

the inner steel tube, the confinement effects of the core concrete is much higher than the conventional CFST columns. The 

fire resistance and cyclic performance of such columns are much higher than their CFST counterparts. The CFDST 

columns will be subjected to eccentric loading in the real application, thus, it is important to study their performance under 

eccentric loading.  

Previously researchers studied the performance of CFDST short columns with various cross-sections [1-15]. The 

circular hollow tube (CHS) used for both outer and inner tubes in CFDST columns provides the most effective 

confinement to the core concrete compared to the other possible cross-sections. However, the existing studies on circular 

CFDST columns are mostly concentrated on the investigations of their axial behavior. Investigations of their performance 

subjected to eccentric loading have been very limited. Ahmed et al. [12] carried out tests on circular CFDST short columns 

under axial and eccentric loads to study the influences of various column parameters. Romero et al. [16] and Ibañez et al. 

[17] tested  CFDST slender columns subjected to eccentric loading where columns were made of ultra-high-strength 

concrete. Numerical models were also developed by researchers such as Chang et al. [1], Wan and Zha [3], Liew et al. [7], 

Ahmed et al. [8-12], Ci et al. [13-15] to investigate the nonlinear inelastic behavior of CFDST columns under different 

loading conditions. Furthermore, the composite action have been previously studied through hamoda et al. [19-21].  

This paper reports an experimental program carried out on circular CFDST short columns under axial and eccentric 

loading. A total of 20 specimens were tested to study the influences of various column parameters including the influences 

of the eccentricity ratio and the diameter-to-thickness ratio of the steel tubes. The test ultimate strength, failure mode, and 

load-deflection curves of the test specimens are reported in this study.  
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Fig. 1: Cross-section of a circular CFDST column. 

 

2. Experiments on eccentrically loaded CFDST short columns 
2.1. Specimens 

A total of 20 columns including 16 CFDST columns loaded either concentrically or eccentrically as well as 2 CFST 

columns and 2 DCFST columns were tested in this experimental program. The nominal diameter for the outer tube of the 

tested columns was 219mm. The height of the test specimens was three times the diameter of the outer tube to avoid the 

influence of the overall buckling of the columns. The geometric details of the test columns are given in Table 1. The 

specimens are divided into four groups, namely G1, G2, G3, and G4. Group G1 consists of two CFST and DCFST 

columns each makes a total number of 4. Out of these two columns, one is loaded concentrically whereas the other one is 

under eccentric loading. In labeling the columns, taking CS-30-1 as an example, ‘CS’ indicates that the test specimen is 

CFDST column (‘CF’-CFST column, ‘CD’-DCFST column), the number ‘30’ indicates the eccentric distance, (‘0’-axial 

compressive test), and the last number indicates the group of test specimens. The CFDST columns were constructed by 

placing the inner and outer hollow steel tubes concentrically and welded together with two steel bars to ensure their 

concentricity and filled the hollow tubes with concrete. Furthermore, to prevent the column end effect, 8 stiffeners were 

welded at the two ends of the column at an interval of 45° along the circumference of the outer tube before the concrete 

pouring.  
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Table 1: Details of test specimens. 

Grou

p 

No

. 

Column Outer tube Inner tube Ratio L 

[mm] 
𝑓𝑐𝑢
′  

[MPa] 

Ecc.(𝑒/𝑟𝑐) 

[mm] 

𝑃𝑢,𝑒𝑥𝑝 

(kN) 𝐷𝑜 
[mm] 

𝑡𝑜 
[mm] 

𝐷𝑖 
[mm] 

𝑡𝑖 
[mm] 

𝐷𝑜/𝑡𝑜 𝐷𝑖/𝑡𝑖 

G1 1 CF-00-1 219 4 - - 54.75 - 660 47 0(0) 2704.3

7 2 CF-60-1 219 4 - - 54.75 - 660 47 60(0.55) 972.87 

3 CD-00-

1 

219 4 114 3.5 54.75 32.5

7 

660 47 0(0) 2453.3

6 4 CD-60-

1 

219 4 114 3.5 54.75 32.5

7 

660 47 60(0.55) 1011.1

1 G2 5 CS-00-2 219 4 114 3.5 54.75 32.5

7 

660 47 0(0) 3076.1

8 6 CS-00-

2# 

219 4 114 3.5 54.75 32.5

7 

660 47 0(0) 3014.6

2 7 CS-30-2 219 4 114 3.5 54.75 32.5

7 

660 47 30(0.27) 1719.7

1 8 CS-60-2 219 4 114 3.5 54.75 32.5

7 

660 47 60(0.55) 1171.1

7 9 CS-60-

2# 

219 4 114 3.5 54.75 32.5

7 

660 47 60(0.91) 1176.3

1 10 CS-140-

2 

219 4 114 3.5 54.75 32.5

7 

660 47 140(1.28) 626.47 

11 CS-180-

2 

219 4 114 3.5 54.75 32.5

7 

660 47 180(1.64) 476.33 

G3 12 CS-00-3 219 5 114 3.5 43.80 32.5

7 

660 47 0(0) 3469.1

1 13 CS-00-

3# 

219 5 114 3.5 43.80 32.5

7 

660 47 0(0) 3484.2

5 14 CS-30-3 219 5 114 3.5 43.80 32.5

7 

660 47 30(0.27) 1858.5

6 15 CS-60-3 219 5 114 3.5 43.80 32.5

7 

660 47 60(0.91) 1066.1

7 16 CS-180-

3 

219 5 114 3.5 43.80 32.5

7 

660 47 180(1.64) 588.57 

G4 17 CS-00-4 219 4 114 2.5 54.75 45.6

0 

660 47 0(0) 2948.1

9 18 CS-00-

4# 

219 4 114 2.5 54.75 45.6

0 

660 47 0(0) 3118.1

2 19 CS-30-4 219 4 114 2.5 54.75 45.6

0 

660 47 30(0.27) 1695.4

7 20 CS-180-

4 

219 4 114 2.5 54.75 45.6

0 

660 47 180(1.64) 456.63 

Note:“#”indicates that it was a repeated test specimen. 
 

2.2. Material properties of steel and concrete 

The steel tube with the steel grade of Q235 was used to make the test specimens with the nominal yield strength of 

235 N/mm2. Tensile coupon tests were performed according to the Chinese standard GB/T 228-2010 [18] to measure the 

material properties of the steel tubes. Table 2 presents the measured average ± standard deviation of the material properties 

of steel tubes obtained from tensile tests.  

  
Table 2: Material properties of steel tubes obtained from tensile coupon tests. 

Tube type No. Geometry of tube 

D×t [mm] 
𝑓𝑠𝑦(MPa) 𝐸𝑠(GPa) 𝑓𝑠𝑢 

(MPa) 
𝜀𝑢 

Outer tube 1 219×4 301.3±5.6 202.5±4.8 387.7±1.9 0.19±0.01 
2 219×5 331.7±6.9 416.9±2.6 0.15±0.01 

Inner tube 3 114×2.5 314.4±5.2 198.1±6.3 

 

375.3±2.5 0.19±0.01 
4 114×3.5 328.8±10.0 415.5±6.5 0.15±0.01 

Ready-mix concrete was used to fill the hollow tubes of test columns. Three concrete cube samples 

(150mm×150mm×150mm) were cast and cured at the same conditions of test columns and used to measure the 

compressive strength of concrete. The average cube strength was measured after 28 days was 47MPa. 
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2.3. Test setup 

The columns were tested using a hydraulic testing machine with a capacity of 4000kN in the structural laboratory of 

Beijing University of Technology, China. Two different loading scenarios were used to test the columns under concentric 

and eccentric loading. Where the columns were subjected to axial load, the specimens were directly loaded to the testing 

machine whereas the eccentric loading devices as illustrated in Fig. 2 composed of an adaptor plate and loading plate with 

a spherical hinge were designed. The loading plates had grooved at different offsets to obtain the eccentric distances. 

Figure 3 shows the test setup of columns under different loading conditions. 

    
Fig. 2: Loading method. 

 
(a)Under axial compression (b)Under small eccentric 

loading (30mm and 60mm) 

(c) Under large eccentric 

loading (140mm and 180mm) 

Fig. 3: Actual test configurations of the column specimen under axial and eccentric compression. 

 

The top end of the test columns was coated with a layer of superhard gypsum before the test to ensure the evenness of 

the columns. The columns were preloaded to eliminate any possible gaps and to ensure the correctness of the readings of 

the devices before the actual loading. The specimens were tested under displacement control scenarios with a rate of 

1mm/min until failure. Four 600mm range precise draw-wire displacement sensors were used to measure the end 

shortenings of the specimens while strain gauges were pasted in the different locations of the columns to obtain the strain 

distribution under increased load. 
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3. Results and Discussions 
Figure 4 shows the failure of the test columns under axial compression load. It is seen that the failure of all CFDST 

columns under axial loading is due to the outward buckling of steel tubes and the crushing of concrete in the same position. 

Furthermore, the failure modes of CFST and DCFST columns are similar to those of CFDST columns. However, CFST 

columns showed greater deformation at the buckling position, while CFDST columns exhibited shear failure mode.  

The failure modes of test columns under eccentric loadings are shown in Figs. 5 and 6. The failure of test columns was 

due to the outward local buckling in the compression regions near the mid-height of the outer steel tube associated with the 

lateral deformation. Furthermore, from Fig. 6 it is seen that the concrete crushed occurred at the end faces of both CFST 

and DCFST columns, while only the separation of concrete and steel tube occurred in CFDST columns. 

 

 

 
Fig. 4: Failure modes of axially loaded three types of stub columns. 

 

  
(a) Group G1        (b)Group G2 

   
(c) Group G3        (d)Group G4 

Fig. 5: Failure modes of eccentrically loaded stub columns.   
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(a) CFST column (b) DCFST column       (c) CFDST column 

 

 

Fig. 6: Crushing concrete at the end faces of short columns. 

 
The measured axial load-end shortening curves of test columns under axial loading and eccentric loading are given in 

Figs. 7 and 8, respectively. The test ultimate strengths of the columns are given in Table 1. The influence of the thickness 

of the outer tube is more than the thickness of the inner tube as can be seen from Fig. 7(a). From the comparisons of the 

load-displacement curves presented in Fig. 7(b), it is seen that the ultimate strength and the ductility of the CFDST column 

are significantly higher than that of the CFST and DCFST columns. This is due to the increased lateral pressure to the core 

concrete compared to their CFST and DCFST counterparts. 

 

 
(a) (b) 

Fig. 7: The applied load-end shortening curves for stub columns under axial compression. 

 
From the axial load-end displacement curves of the columns under eccentric loading illustrated in Fig. 8, it is seen that 

the eccentricity has a great influence on the initial stiffness, ultimate strength, and deformation capabilities of short 

columns. The axial displacement of the column increases with the increase of the loading eccentricity. With the increase of 

eccentricity, the ultimate axial strength decreases correspondingly, but the degree of reduction becomes slower as the 

loading eccentricity increases. Overall, all CFDST columns exhibit ductile failure.  
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(a)Group G1 (b)Group G2 

 
(c)Group G3 (d)Group G4 

Fig. 8: The test load-end shortening curves for stub columns under eccentric compression. 

 

4. Conclusion 
In this paper, the behavior of short circular CFDST columns is investigated that are loaded either concentrically or 

eccentrically. An experimental program consists of twenty specimens is carried out to examine the influences of a wide 

range of column parameters. The behavior of CFDST columns composed of the circular section is also compared to its 

CFST and DCFST counterparts. The test results show that compared with CFST and DCFST columns, CFDST columns 

have higher ultimate strength, ductility, and initial stiffness under axial compression. Furthermore, all the CFDST columns 

show good ductility behavior under eccentric compression loads. While the reduction of the ultimate strengths increases 

with the increase of the loading eccentricity, the rate of reduction becomes less as the loading eccentricity increases. 
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