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Abstract – This study investigates the multiple tuning requirements of rail bridge girder and the effects of detuning in situations raised 

due to the presence or absence of the trainloads. At first, a generalized stepwise formulation is established for designing an optimum 

multiple-tuned-mass-damper (MTMD) system in the modal space of a continuous bridge girder for controlling a selected set of modes. 

To verify the performance of the MTMD system, a numerical study is conducted with an existing steel rail bridge girder considering with 

and without trainload conditions. For each of the loading condition, the primary bridge girder is considered i) for an attached MTMD 

system optimally tuned to the conforming load condition, ii) for an attached MTMD system optimally tuned to the other load condition, 

and iii) for an uncontrolled condition without any attached TMDs. Time history analysis of the system assembly is then performed under 

the seismic excitation along with the excitation caused by dynamic train movements. The response of the primary bridge girder for a 
particular trainload condition indicates that the MTMD system works satisfactorily when it is tuned based on the conforming load 

condition. However, the attached MTMD conforming to a different load condition was found to be inadequate in controlling the dynamic 

excitation of the primary bridge girder system. 
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1. Introduction 
Bridges are subjected to severe vibration caused by heavy moving vehicles or environmental load, and are often required 

to transfer the vibration energy of the primary structural system to an auxiliary system like tuned mass damper. In the case 

of a railway bridge girder, application of tuned mass damper (TMD) in controlling the bridge vibration is well accounted. It 
is important to note that the full potential of a TMD can be achieved when its parameters are optimally tuned to the primary 

structure. As a development of the traditional form of optimum TMD, the concept of MTMD was introduced [1], and it was 

found to work efficiently in absorbing the vibration energy of the bridge structure. Later on, the MTMD system was 

successfully implemented for the rail bridge vibration control [2]. However, despite the widespread development, the 
performance of TMD is highly susceptible to the accuracy of tuning ([3]; [4]; [5]). Under miscellaneous circumstances, the 

tuning frequency of the TMD changes because of the variation in the primary structure’s stiffness, inertia, or both. 

Consequently, the optimum tuning criteria of the designed TMD system changes, resulting in the reduction in the efficiency 
of the vibration control system. Such detuning condition of the TMD system often generates an undesired amplification in 

the dynamic response of the structure. This effect is relevant in the case of pedestrian bridges, grandstands, floors, sports 

stadia, liquid-retaining structures [5]. In the case of railway bridges, a significant modification in the dynamic properties of 
the system is likely to occur during the train movement as compared to the bare structure. This changes the optimum tuning 

requirements of the designed TMD system. This study investigates the effect of detuning considering an optimally designed 

MTMD system for an existing rail bridge girder. In the first part of the study, an optimum MTMD system is designed in the 

independent modal space of a continuous primary bridge girder for controlling a selected set of modes. Next, an existing 
steel rail bridge girder equipped with the designed MTMD system is modelled in OpenSees [6] framework under earthquake 

excitations with strong vertical components for the with and without trainload conditions. Finally, the performances of the 

MTMD systems as designed optimally for different trainload situations are compared to study the detuning effects in detail. 
 

2. Design of Optimum MTMD System 
In this section, a stepwise formulation is carried out to design an optimum MTMD system attached to a primary bridge 

girder for minimizing its dynamic vibration. The optimum MTMD design is conducted in the independent modal space of 
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the bridge girder for controlling the predominating modes contributing to the system vibration. In this formulation  ’𝑝’ 
sets of MTMD systems are considered along the span of the bridge girder with each set comprised of ’𝑞’  number of 
TMDs uniformly distributed across the bridge girder. A schematic diagram representing the primary bridge girder 

with the attached MTMD system and a single TMD unit are shown in Fig 1. 

 

   
   Fig. 1: Schematic diagram representing (a) the primary bridge girder with the attached MTMD system and (b) a single TMD unit 
  

The equation of motion of the overall system assembly can be written as follows: 
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where, 𝑚(𝑥), 𝑐(𝑥) and 𝐸𝐼(𝑥) represent the mass per unit length, damping force per unit length and the flexural rigidity of the 

continuous system, respectively at a distance 𝑥 along the span; 𝑎1 is a constant corresponding to stiffness proportional 

damping;  𝑝(𝑥, 𝑡) denotes the external excitation;  the delta function represents the control force exerted by the MTMD system 
at distinct locations; the distance of the 𝑟th set of MTMDs along the bridge span is denoted as 𝑎𝑟; the TMD unit corresponding 

to the 𝑟th set and 𝑙th number across the bridge girder is denoted by the subscript 𝑟𝑙; the stiffness and the damping of the 𝑟𝑙𝑡ℎ 

TMD unit are indicated as 𝑘𝑟𝑙 and 𝑐𝑟𝑙 , respectively, and 𝑣𝑏(𝑎𝑟 , 𝑡) and 𝑣𝑇𝑟𝑙(𝑎𝑟 , 𝑡) are the vertical displacements of the bridge 

girder and the 𝑟𝑙𝑡ℎ TMD unit, respectively, at a distance 𝑎𝑟 at time 𝑡.  The vertical displacements are measured in reference 

to the equilibrium position of pier base as a datum. The system assembly thus obtained in Eqs 1-2 are taken to the independent 

modal space of the primary bridge girder by following the modal superposition as  𝑣𝑏(𝑥, 𝑡) = ∑ 𝜙𝑖
∞
𝑖=1 (𝑥)𝑌𝑖(𝑡) where 𝜙𝑖(𝑥) and 

𝑌𝑖(𝑡) are the mode shapes and the modal coordinate for the 𝑖𝑡ℎ mode, respectively. The equation of motion for the 𝑖𝑡ℎ mode 

can be represented as 

                                          𝑀𝑖𝑌�̈�(𝑡) + 2𝑀𝑖𝜔𝑖𝜁𝑖𝑌�̇�(𝑡) + 𝜔𝑖
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the 𝑖𝑡ℎ modal control force from the MTMD system,  𝜔𝑖 and 𝜁𝑖 indicate the 𝑖𝑡ℎ modal frequency and damping ratio, 

respectively. The system transfer function in the modal domain can be expressed as 𝒀‾ (𝒔) = 𝑮(𝒔) 𝑭‾ (𝒔), where 𝒀‾ (𝒔) and 
𝑭‾ (𝒔) are the Laplace transformation of modal displacement 𝒀(𝒕) and modal excitation vectors 𝑭(𝒕), respectively and 𝑮(𝒔) is 

the transfer function matrix. The 𝑖𝑗𝑡ℎ diagonal element of 𝑮(𝒔)-1  can be written as 𝑀𝑖𝑠
2 + 2𝑀𝑖𝑠𝜔𝑖𝜁𝑖 + 𝜔𝑖
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optimum tuning ratios, i.e., 𝛾𝑟𝑙 = √𝑘𝑟𝑙/𝑚𝑟𝑙/𝜔1  and the optimum damping ratios, i.e., 𝜂𝑟𝑙 = 𝑐𝑟𝑙/(2√𝑘𝑟𝑙𝑚𝑟𝑙 ) can be identified 
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by minimizing the infinity norm (i.e., ||𝐺||∞ = 𝑠𝑢𝑝𝜔  𝜎𝑚𝑎𝑥(𝑮(𝒔))) of the system transfer function. Here, 𝜎𝑚𝑎𝑥(G(s)) = 

𝜆𝑚𝑎𝑥(𝑮(𝒔) 𝑮(𝒔)𝑻) denotes the maximum Eigen value of the matrix (𝑮(𝒔) 𝑮(𝒔)𝑻) and 𝑠𝑢𝑝𝜔  denotes the supremum or least 

upper bound over all real valued frequencies 𝜔 . In case of a known excitation statistics, the system transfer function can be 

further modified based on the frequency regimes of excitation for obtaining the optimum MTMD parameters. 

3. Numerical Investigation 
3.1. Bridge modelling 

In this part, an existing thirty-five-year-old steel plate girder rail bridge classified as bridge number 656 [7] is considered 

for designing the optimum MTMD system for resisting the earthquake-induced vibration. The length of each plate girder is 

24.4 m. In the bridge system, the connections are primarily welded connections with riveted bracings and intermediate 
stiffeners. A detailed description of the bridge with all the sectional dimensions is provided in [7]. The three-dimensional 

prototype of the bridge superstructure is modelled in OpenSees [6] for the cases of with and without trainloads. For without 

trainload case, the total primary mass is estimated to be 41000 kg, mainly coming from the self-weight of the bare deck of 
the bridge. In the case of with trainload, a 16.25-ton axle load enhances the total mass of the structure to 106000 kg. The 

main bridge girder is modelled using the ‘beamWithHinges’ element, and the bracings are modelled as the ‘truss’ elements 

in OpenSees. The damping ratio of the primary structure is taken as 2% under service conditions and modelled as Rayleigh 

damping. Apart from the earthquake excitation, the vibration due to the moving trainload with an average speed of 60 
km/hour [8] is also accounted in this study. The dynamic load due to train movement is modelled as time-series load 

considering the train speed and time delay for each node on the girder. Eigenvalue analysis for the bridge girder considering 

both the trainload cases shows a significant deviation (i.e., 36%) between the corresponding modes of the systems. In order 
to design the optimum MTMD parameters, only the fundamental vertical modes of the bridge girder are considered on the 

basis of a preliminary time-history analysis with an impulse and white noise excitation. Six TMDs on the symmetric edges 

across the bridge girder at distances L/4, L/2, and 3L/4 from the bridge pier are considered for obtaining the maximum 
control efficiency. The mass ratio of each unit of the MTMDs is considered to be 0.83% with respect to the without trainload 

case. Optimum tuning ratios for without and with trainload cases are obtained as 0.7 and 0.68, respectively, and the optimum 

damping ratios for without and with trainload cases are obtained as 0.05 and 0.02, respectively for each unit of MTMDs. 

MTMD units are modelled in OpenSees using ‘UniaxialMaterial Parallel’ elements by connecting uniaxial elastic and viscous 
material in parallel. 
 
3.2. Time history analysis and detuning 

Earthquake ground motions having predominant vertical components are considered from the PEER Ground Motion 
database [9] for analysing the response time history for the bridge structure (Table 1). The data set consists of vertical and 

orientation independent GMRotD50 spectra with 5% damping [9]. 
 

Table 1: Response Summary. 
 

S.No. 

 

Name of the ground motion 

 

PGA (g) 

Percentage reduction in acceleration responses 

Without trainload With trainload 

Tuned Detuned Tuned Detuned 

1 Imperial Valley (1940) 0.178 55 10 64 -33 

2 Kobe (1995) 0.34 50 13 52 -25 

3 Northridge (1994) 0.32 35 12 50 -20 

4 Loma Prieta (1989) 0.30 44 10 50 -21 

5 Cape Mendocino (1992) 0.74 40 2 48 -24 

 

Time history analysis is carried out for both the trainload conditions. For each condition, the primary bridge girder is 

considered with an attached MTMD system i) optimally designed for the conforming load condition, denoted as the tuned 

case, ii) optimally designed for the other load condition, denoted as the detuned case, and iii) for an uncontrolled condition. 

The responses are obtained in terms of the acceleration of the bridge girder at its mid-span. The percentage reduction in the 
responses for an attached MTMD condition is estimated with respect to the uncontrolled condition as summarized in Table 

1. The table clearly indicates that a significant percentage reduction in the responses is observed for the tuned condition of 

the attached MTMD system considering both the trainload cases. However, at a detuned condition of the attached MTMD 
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system, deterioration in the performance of the control system can be observed. Moreover, for with trainload condition, 

the attached detuned MTMD system was found to amplify the bridge girder responses as compared to the uncontrolled 
structure. The illustrative time history plots are shown for both the trainload conditions for the Imperial Valley 

earthquake in Fig 2. 

 

                      
        Fig 2: Acceleration responses for the (a) without trainload and (b) with trainload case for Imperial Valley earthquake. 

 

4. Conclusion 
The present study mainly focuses on the multiple tuning requirements of rail bridge girders and the effects of 

detuning in situations raised due to the presence or absence of the trainloads. The optimum MTMDs as analytically 

designed in the modal domain of a continuous system are implemented by numerical modelling of an existing steel rail 
bridge under earthquake excitations at different trainload conditions. Time history analysis of the system assembly 

shows that the attached MTMD performs satisfactorily while tuned to the conforming trainload condition. However, the 

same MTMD becomes detuned at a different trainload condition, and it fails to provide the desired response reduction 
of the bridge girder system. Moreover, in certain cases, the responses are found to be amplified as compared to the 

uncontrolled system. The study thus demonstrates the effect of detuning for an MTMD system in the context of a rail 

bridge girder at varying trainload conditions and necessitates the multi-tuning requirement of the control system. 
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