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Abstract — This paper develops a simplified fiber-based numerical model to investigate the performance of circular concrete-filled
stainless steel tubular (CFSST) short columns subjected to axial loading. A new compressive concrete strength formula is developed
based on the test data of CFSST columns. The accuracy of the numerical model is evaluated by comparing the ultimate axial capacity
and axial load—strain curves of CFSST columns with a large test database. A parametric study is carried out to investigate the effects of
geometry and material properties on the axial performance of CFSST columns.
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1. Introduction

The composite action between the steel and concrete of concrete-filled steel tubular (CFST) columns results in
improved structural performance in terms of strength, ductility, fire and seismic resistance compared to that of reinforced
concrete columns. The lateral confinement inserted by steel tube to the confined concrete is more effective in circular
CFST columns compared to its rectangular and square counterparts, thus widely used in the construction of high-rise
buildings and bridge piers to carry large axial loads [1]. However, the steel tube of CFST columns may be subjected to
corrosion which may reduce their axial performance. As stainless steel offers excellent corrosion resistance, circular
concrete-filled stainless steel tubular (CFSST) columns were proposed. Owing to the distinguished strain hardening
behavior of stainless steel, the performance of CFSST columns is different than that of CFST columns with carbon steel. In
addition, the cost-effective design of CFSST columns is important considering the higher cost of stainless steel than carbon
steel. However, there is a lack of research in the development of an accurate numerical model to study their axial
performance.

Test on circular CFSST short columns subjected to axial loading was carried out by [2-14]. The test results showed
that CFSST columns have higher ultimate strength and ductility compared to that CFST columns. The experimental
program reported in the literature examined the influences of a wide range of column parameters of CFSST columns under
axial loading including the tube diameter [2-4, 6-8, 10, 12, 15], tube thickness [4, 6, 8, 12, 14], concrete strength [2-4, 6, 7,
11, 14], recycled aggregates [5, 9], and column slenderness ratio [3, 10-12]. The axial behavior of CFSST columns was
numerically investigated by [13], [15], [16], [17] and [18]. Patel et al. [16] concluded that the conventional lateral pressure
model for carbon steel underestimated the axial performance of CFSST columns. However, until today no effort was made
to develop a lateral pressure model for CFSST columns.

This paper develops a numerical model using a fiber model to investigate the axial performance of CFSST short
columns under axial loading. An accurate formula to predict the compressive strength of concrete of CFSST columns is
developed based on the existing experimental data. The accuracy of the numerical prediction is validated using a large test
database comprising of test data of 125 short columns. A parameter study is carried out to study the influences of geometry
and material properties of CFSST columns on their axial performance.

2. Numerical Model
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The numerical model is developed using the fiber analysis theory, where the cross-section of the CFSST column is
divided into small fibers, as shown in Fig. 1. The fibers either represent the properties of stainless steel or concrete based
on the uniaxial material laws assigned to them. The computational analysis starts with initializing a small axial strain and
then calculating the stresses occurring in fibers using the uniaxial material laws assigned to them. The column axial load (

P ) is calculated as the resultant stress. The theoretical analysis continues for the increase of the axial strain until the
maximum column axial load (P,,) is achieved. The stopping criterion is chosen when P drops to 0.5P,, or the axial
strain exceed the prescribed ultimate strain of concrete (& > £_, ). The analysis steps to predict the full axial load-strain (
P — &) curves of CFSST columns are given as follows:

(1) Input details of CFSST column.

(2) Divide the cross-section into fine fibers.

(3) Initialize strain as ¢ = Ae.
(4) Calculate fiber stresses using the material uniaxial stress-strain relationships.

(5) Compute the axial force P as the stress resultant.
(6) Increase axial strain by ¢ = ¢ + 4e.

(7) Repeat Steps 4 to 6 until P <0.5P,, ore>¢,,
(8) Plot P—¢& curve.

Stainless steel fiber

Concrete fiber

Fig. 1: Discretization of the cross-section of a CFSST column in fiber analysis method.

3. Material properties

3.1 Stainless steel

The stress-strain relationships of stainless steel proposed by Quach et al. [19] are adopted in this study. The original
formulae proposed by Quach et al. [19] to calculate the full stress-strain curves of stainless steel is stress-dependent.
Abdella et al. [20] suggested formulae to derive the inverse version of the stress-strain relationships of stainless steel
proposed by Quach et al. [19] to calculate the full ranges of the tensile and compressive stresses of stainless steel in the
function of strain. The three-stage stress-strain relationships of stainless steel developed by Quach et al. [19] provide a
better estimation than the existing two-stage constitutive laws of stainless steel [16, 21].

3.2 Concrete
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Figure 2 illustrates the stress-strain relationships of concrete adopted in this study [22]. The axial stress of concrete (
O .. ) at the ascending branch of the curve is calculated using the formulae developed by Mander et al. [23]:

o, = (el &) for 0<e <&, 1)
(e.1e,) +1-1
E.s.
A= .C cc : 2
Ecgcc - fcc ( )

where, &, is the concrete strain; f_ and &, are the concrete compressive strength and the corresponding strain,
respectively; E._ is the elastic modulus of concrete, calculated as [22]:
E, = 4400 [y, f_' 3)
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Fig. 2. Stress-strain relationship of concrete [22].

The column size on the compressive strength of unconfined concrete ( f. ") is considered using a reduction factor (7,
), developed by Liang [24] as ., =1.85D;***, where, D, =D-2t, in which D and t are the diameter and thickness of

the steel tube, respectively.
As discussed earlier, the lateral confinement provided by the steel tube improves the strength and ductility of the
confined concrete which is considered in the stress-strain relationships of concrete. A new formula to calculate the

compressive strength of concrete (fc'c) of CFSST columns is developed by analyzing the existing test data of CFSST
columns. Parameter study demonstrates that fc'C is influenced by the confinement factor (&), which can be calculated as

E=Aoc,, ! Ay.f., where, o,, is the yield stress of stainless steel taken as 0.2% proof stress; f,

. Is the compressive

strength of unconfined concrete; A, and A, are the area of steel and concrete, respectively. The test compressive strength

of confined concrete ( f, ) of tested columns is determined by subtracting the axial capacity of the stainless steel tube

from the ultimate axial load of CFSST columns. Based on the regression analysis, a formula to calculate the compressive
strength of confined concrete is proposed herein as:

¢

f— =0.44£+0.9>1.0 (4)

c

Wang et al. [25] suggested a formula to calculate the compressive strain of confined concrete (g;c ) :
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-15
6. =3000-104(c, ) (1,) {0.73— 3785.8(%) } <0.01 (5)

The axial stress of concrete at the descending branch of the stress-strain curves is calculated using the formula
developed by Lim and Ozbakkaloglu [22] as:

fclc — fcr

. -2
1+( &~ & J
i~ &
where, fCr is the residual strength of concrete, calculated as fCr = p. fc'c, where, [, is the strength degradation

parameter developed by Ahmed et al. [26] as:
B. =1.2420-0.0029 (%j —0.0044 f_  where (O <pf. < 1.0) (7)

O, = fcc - for gc>‘9nlzc (6)

The strain at the inflection point (& ) is calculated as [22]:

6, =286, (1) [:—j 106, (1) [1—;—] ®)

cc cc

4. Validation

The numerical model is validated by comparing the predicted ultimate load and P —& curves of CFSST columns
with the ones obtained from the test study. A total of 125 test data is used for validation purposes. The comparison between
the test and predicted ultimate load of CFSST columns is shown in Fig. 3, where it can be seen that the numerical model
can provide a reasonable estimation of the ultimate strength of CFSST short columns subjected to axial loading. From Fig.
4, it also can be seen that the numerical model can accurately predict the P —& curves of CFSST columns.
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Fig. 3. Comparison of the predicted ultimate strength of CFSST columns with the experimental results.
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Fig. 4. Comparison of the predicted P —¢ curves of CFSST columns with the experimental results.

5. Parametric study
The validated numerical model is used to carry out a parameter study to investigate the effects of diameter-to-
thickness (D /t) ratio, concrete compressive strength and the yield stress of steel on the axial performance of CFSST

columns. The details of the reference column are as follows: D=500 mm; t=10mm, f =50 MPa,
0,, =205 MPa.

5.1 Effects of the diameter-to-thickness (D /t) ratio

The D/t ratio of the CFSST column is an important column parameter that influences their axial performance. In this
study, the thickness of the steel tubes is changed to vary the D/t ratio from 25 to 100. As illustrated in Fig. 5, it was found
that increasing the D/t ratio from 25 to 100 decreases the ultimate load of CFSST columns by 51.4%. This is because
decreasing the thickness of the steel tube wall reduces the confinement effect. The ductility of the CFSST column is also
decreased as the D/t ratio increases, as can be seen in Fig. 5.
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Fig. 5. Influences of D/t ratio on the P —& curves.

5.2 Effects of concrete compressive strength

The influences of concrete strength on the axial performance of the CFSST column are investigated by changing the
concrete strength from 25 MPa to 100 MPa. It is seen from Fig. 6 that increasing concrete strength increases the axial
capacity of the columns. When concrete strength increases from 25 MPa to 100 MPa, the ultimate load is increased by

79.2%. However, increasing concrete strength decreases the ductility of the columns. This is due to the brittle nature of
high-strength concrete.
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Fig. 6. Influences of concrete compressive strength on the P —¢& curves.

5.3 Effects of steel yield stress

To study the effects of steel yield stress, the axial performance of the CFSST column is investigated for different
grades of stainless steel, namely austenitic, ferritic and duplex stainless steel. The yield stress of the austenitic, ferritic and
duplex stainless steel are taken as 205, 275 and 430 MPa, respectively based on suggestions given in AS/NZS 4673-2001
[27]. It is found that with a steel yield stress increased from 205 MPa to 430 MPa, the ultimate load of the CFSST column

is increased by 48.1%, as illustrated in Fig. 7. However, the steel yield stress has insignificant effects on the ductility of the
CFSST column.
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Fig. 7. Influences of steel yield stress on the P —& curves.

6. Conclusion

This paper develops a numerical model to study the performance of CFSST columns under axial loading. A new
formula to calculate the compressive strength of concrete is developed based on the existing test data. Upon validation, the
numerical model is used to perform a parametric study to study the effects of the D/t ratio, the yield stress of steel and
concrete strength on their axial performance. It is found that the numerical model can accurately predict the axial
performance of the CFSST column observed experimentally. The parametric study shows that increasing D/t ratio
reduces the ultimate load of CFSST columns whereas increasing the yield stress of steel or concrete strength increases their
ultimate load. However, the ductility of the CFSST column is reduced as the D/t ratio or the concrete strength increases.
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