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Abstract - The impacts of red-light cameras (RLCs) on overall signalized intersection safety are still debatable. This paper examines 
the safety impacts of RLCs using actual collision records for treated and untreated signalized intersections in Ottawa, Ontario, Canada. 
Direct regression analysis of collision data on treated intersections showed a significant impact for RLCs on angle, injury, and fatal 
collisions but no significant impact on other impact types and severity levels, a finding that was likely affected by the relatively small 
number of treated sites. On the other hand, an Empirical Bayes before-and-after study showed a significant impact for RLCs, where total 
and property damage only (PDO) collisions increased while injury and fatal collisions decreased. The impact of RLCs also depended on 
the collision type, where sideswipe, rear-end, and single motor vehicle collisions increased, but angle collisions decreased at RLC treated 
sites. It is therefore concluded that RLCs at signalized intersections in the study area reduced severe collisions involving injury or fatality 
while increasing PDO collisions. 
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1 Introduction 
Road crashes tend to cluster around intersections due to continuous stop-and-go traffic, unsafe road user behaviours, and 

some complicated conflicting movements. In Canada, intersections accounted for more than 30% of traffic fatalities and 40% 
of severe injuries in 2009 [1]. Generally, one of the main factors contributing to intersection-related crashes is drivers’ traffic 
violations. Specifically, red light running (RLR), when a driver does not stop and runs the red light at a signalized intersection, 
is one of the primary causes of such crashes [2]. The problem of RLR is a worldwide concern. In the USA, RLR caused 
approximately 115,741 injuries and 928 deaths in 2020 [3]. Red-light cameras (RLCs) represent a countermeasure against 
RLR, which is being employed at a consistently increasing rate. A RLC is a traffic enforcement camera that takes photos of 
vehicles that enter an intersection in the red interval of the traffic signal, thus serving as a deterrent to drivers who purposely 
run red lights [4]. Although RLCs are used for the main objective of reducing the number of RLR violations and associated 
crashes, their safety impacts remain debatable [5]. While many studies concluded that RLCs reduce crashes [6], other studies 
indicated that RLCs increase crashes or have negligible safety impacts [7],[8]. Several studies in the literature have assessed 
the safety impacts of RLCs with conflicting results including reduction of certain types of crashes coupled with increase of 
other types [5],[9]-[14]. Notably, RLCs often increase rear-end crashes because of sudden breaking [15]. In addition, while 
most studies reported a reduction in the more severe crashes involving injuries or fatalities [5],[9], others concluded an 
insignificant effect [15] or increase in these severe crashes [16]. 

In the review of previous work, it is noted that the impact of RLCs on the collision severities and impact types varied 
based on the methodologies and study areas. Therefore, the principal objective of this paper is to examine the expected 
benefits of RLCs as a safety improvement tool based on historical collision data in the City of Ottawa as a typical mid-size 
Canadian city. The paper evaluates the safety performance of RLCs in Ottawa by developing safety performance functions 
(SPFs) and performing a before-and-after study considering the potential contributing factors, such as geometric 
characteristics of the intersections and speed limits on the intersecting roads. 
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2 Study Methodology and Data Collection 
 

2.1 Site Selection 
This study is based in the City of Ottawa, Canada, where 70 RLCs are currently installed at signalized intersections. For 

the safety analysis, RLC intersections were selected based on the availability of traffic volume and collision data. Intersections 
with a maximum RLC installation year of 2017 were considered to ensure at least two full years of collision records prior to 
COVID-19 public health restrictions in 2020. Subsequently, 19 RLC intersections with installation years between 2011 and 
2017 were selected and are referred to as the treated sites. Moreover, 40 signalized intersections without RLC were selected 
as a reference or comparison group. These intersections have similar characteristics to the treated sites in terms of traffic 
volume, geometric design, and speed limit. Every intersection in this reference group is at least 800 m away from the nearest 
treated intersection. All treated and reference intersections had a constant geometric design during the study period. Figure 1 
shows a map of the City of Ottawa with all RLC sites and the selected treated sites in this study. 

 
2.2 Data Collection 

Collision data from 2013 to 2019 were obtained from the Open Ottawa dataset [17]. An additional collision dataset and 
traffic volume data were provided by the Traffic Department of the City of Ottawa for the period of 2009 to 2012. Collision 
data shapefiles were imported into ArcGIS software to identify the intersection-related collisions, which were defined as 
those collisions within a specific distance from the intersection. Most studies have employed a buffer zone of 46 or 76 m 
around intersections. For example, a 76-m buffer zone is used in the Highway Safety Manual (HSM) [18]. However, such a 
buffer zone has the potential to create areas of overlap with adjacent intersections [19]. On the other hand, a 46-m buffer 
zone offers the advantages of reducing the likelihood of overlapping with adjacent intersections and reducing the probability 
of several collisions being classified incorrectly as intersection collisions in urban areas with a higher density street network. 
Therefore, a 46-m buffer zone was used to identify intersection crashes in this study. Collisions at each intersection were 

 
 

Figure 1: RLCs within Ottawa, Canada, and Selected Sites. 
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classified based on impact type into four groups; namely, single motor vehicle, rear-end, angle, and sideswipe; and were 
classified based on severity to three levels; namely non-fatal injury, fatal+injury, and property damage only (PDO). Average 
annual daily traffic (AADT) and collision data included three years before and two or three years after RLC installation at 
treated sites and three continuous years for the reference group. Geometric characteristics of the intersections; namely the 
number of through, left turn, and right turn lanes; were collected manually from Google Earth Pro. Finally, the speed limits 
on the major and minor roads of each intersection were also collected from Google Maps. 

 
2.3 Safety Performance Function (SPF) 

The first approach used to examine the impacts of RLCs on traffic safety is regression analysis to develop safety 
performance functions (SPFs) including a parameter for the presence of RLC. Furthermore, SPF development using data 
from the reference (untreated) group is also a required step in the second approach which uses Empirical Bayes (EB) before- 
and-after study. In general, a SPF is a statistical model for predicting the frequency of collisions based on site-specific 
characteristics. 

According to Lee et al. [12], it is important to make an acceptable selection of the dependent variable, independent 
variables, and the statistical model that effectively identifies the relationship between the dependent and independent 
variables to develop SPF accurately. AADT, geometric characteristics, and speed limit information all serve as independent 
variables, while annual collision frequency serves as the dependent variable. Modelling attempts in this paper accounted for 
the impact type and severity level by setting different dependent variables to correspond to each impact type and severity 
level in addition to all impact types and all severity levels combined. In selecting the statistical model, several issues with 
linear regression models have been widely documented in the literature, with Poisson or Negative Binomial (NB) regression 
widely accepted as the best approach for fitting collision data and developing SPFs [12]. 

Modelling collision frequency can be performed using either a Poisson or NB regression model, based on the over- 
dispersion parameter. If the value for over-dispersion does not change considerably from zero, the Poisson model can be an 
appropriate option. When the over-dispersion parameter exceeds zero, it would be reasonable to use a NB model [12]. The 
other phenomenon that might happen is the finding of no crashes in the collision data for a considerable portion of the sample. 
To address this issue, zero-inflated models may be used when developing SPF models using Poisson or NB distributions, but 
this was not applicable in this study because there were no sites with zero collisions. In all modelling attempts in this study, 
NB regression provided a better fit than Poisson regression, and all results presented in this paper correspond to NB 
regression. 

 
2.4 Before-and-After Study 

Three types of before-and-after studies exist in the literature. First, the naïve before-and-after study is the easiest method 
available for assessing the safety consequences of treatments [20]. This approach does not take into consideration changes 
in many factors from the “before” to the “after” periods [10]. Furthermore, the regression-to-mean (RTM) and site selection 
impacts are not taken into consideration. RTM is a common concern in before-and-after analyses evaluating the safety effects 
at treated locations, which likely already have higher crash frequencies and severities than other locations [12]. The second 
method is a before-and-after study with a reference group, which is partially similar to the naïve method but takes local and 
regional variations into account [16]. The third method is the EB before-and-after method (referred to in this paper simply 
as the EB method), which is a more credible method, and was selected for this study. The EB method is a meticulous 
technique for assessing the safety effects of a given treatment that has been extensively employed in contemporary traffic 
safety research, as shown in the review of RLC studies. The EB method is a statistical technique that considers RTM bias 
associated with safety impact assessment. In the EB method, variations in collision frequencies at treatment sites during the 
“before” and “after” periods are properly accounted for, which is one of this method’s major advantages [5]. 

The EB method amalgamates the observed and predicted collision frequencies to estimate an unbiased expected crash 
frequency at each treated site in the “after” period if treatment had not been implemented. The predicted collision frequency 
is determined using a SPF normally developed using the reference group data. The expected collision frequency at a given 
location is then estimated as follows [18]: 

 
𝑁𝑁𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 = 𝑤𝑤. 𝑁𝑁𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 + (1 – 𝑤𝑤)𝑁𝑁𝑜𝑜𝑏𝑏𝑠𝑠𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑑𝑑 (1) 
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Where 𝑁𝑁𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 = estimate of expected average collision frequency for the “before” period; 𝑁𝑁𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 = predicted 
collision frequency for the “before” period; 𝑁𝑁𝑜𝑜𝑏𝑏𝑠𝑠𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑑𝑑 = observed collision frequency over the “before” period; and 𝑤𝑤 = 
computed weight factor, which is calculated using the following equation. 

 
1 

𝑤𝑤 = 
1 + 𝑘𝑘 . ∑𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑡𝑡𝑢𝑢𝑑𝑑𝑦𝑦 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟𝑠𝑠 𝑁𝑁𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 

(2) 

 
Where 𝑘𝑘 = over-dispersion parameter of the associated SPF used to predict collision frequency. 

 
The expected collision frequency (𝑁𝑁𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑) should be normalized for the “after” period because it is an approximation 

regarding the duration of the “before” period. Therefore, the following equation is applied to estimate the “after” period 
crashes [21]: 

 
𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝛼𝛼 

𝜋𝜋  = 𝑁𝑁 × 𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟 
𝑖𝑖 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝛼𝛼 

𝑏𝑏𝑒𝑒𝑓𝑓𝑜𝑜𝑟𝑟𝑒𝑒 
(3) 

 
Where 𝜋𝜋𝑖𝑖 = expected number of collisions at treatment site 𝑖𝑖 in the “after” period had a treatment not been implemented; 

𝛼𝛼 
= regression coefficient of AADT from the SPF; and 𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟 and 𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑏𝑏𝑒𝑒𝑓𝑓𝑜𝑜𝑟𝑟𝑒𝑒= AADT at the treatment site in the “after” 
and “before” periods, respectively. 

 
The total expected number of collisions at all treatment sites in the “after” period (Π) is then calculated as follows: 

 
 

Π = ∑ 𝜋𝜋𝑖𝑖 
𝑖𝑖 

(4) 

3 Results and Discussion 
As mentioned earlier, the safety analysis of the impacts of RLCs was performed using the actual collision records. 

Having collected the data of collisions, AADT, and geometric characteristics of the treated and reference sites, the two 
analysis approaches mentioned in the previous section were applied. This section first presents the NB regression results and 
the developed SPF for Ottawa’s local conditions. Then, the results of the EB method are presented. 

 
3.1 Regression Analysis and SPF 

In this approach, the NB regression was used to develop SPFs that relate the annual collision frequency at a signalized 
intersection of the different impact types and severity levels to site characteristics. For general SPFs, the NB regression was 
performed using the data of the “before” and “after” periods of the 19 RLC (treated) intersections using STATA software. 
The safety treatment RLC was considered using a dummy independent variable (equal to 1 if RLC exists or 0 otherwise). 
Variables such as AADT, speed limit on the major and minor roads, and the number of through and protected left turn lanes 
were considered. Independent variables with a p-value greater than 0.10 were removed from the model. The Akaike 
Information Criterion (AIC) was used to compare the models’ goodness-of-fit, where smaller AIC values suggest a better fit. 
Table 1 presents the independent variables included in the best fit models for collision frequencies classified based on 
collision impact type and severity level. 

As shown in the table, each model has a number of significant independent variables. However, the RLC dummy variable 
was statistically significant only in angle, injury, and injury+fatal collisions. In all these three collision categories, the RLC 
variable has negative collisions indicating a reduction in expected collision frequency at intersections with RLC. Specifically, 
the coefficients indicate a reduction in collision frequency of 26% to 30% of these collision categories. Therefore, RLCs 
were associated with a decrease in the angle, injury, and fatal collisions. 
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Table 1: Final SPFs for the Different Collision Categories (Treated Sites in the Before and After Periods). 
 

Final Model Variable Coefficient p-value Dispersion 
factor 

 
 
 
Total Collisionsa 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.604 <0.001  
 
 
0.055 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.347 <0.001 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.015 0.002 
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.236 0.001 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.198 0.024 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.242 0.001 
Constant -7.698 <0.001 

 
Rear-end 
Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 1.118 <0.001 

0.283 
𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.281 0.001 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.272 0.064 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.030 0.001 
Constant -13.841 <0.001 

 
Angle Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.480 <0.001 

0.067 
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.141 0.057 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.223 0.037 
𝑅𝑅𝑅𝑅𝑅𝑅 -0.303 0.009 
Constant -2.692 <0.001 

 
Sideswipe 
Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.716 0.011 

0.168 
𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.815 <0.001 
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.337 0.045 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.728 <0.001 
Constant -13.955 <0.001 

 
SMV Collisionsb 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.034 0.01 
≈0 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.517 0.005 

Constant -3.054 <0.001 
 
 
PDO Collisionsc 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.702 <0.001  
 
0.069 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.355 <0.001 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.269 0.001 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.015 0.006 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.206 0.035 
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.225 0.008 
Constant -8.958 <0.001 

 
Non-Fatal Injury 
Collisionsc 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.343 <0.001  
 
≈0 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.230 0.003 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.017 0.043 
𝑅𝑅𝑅𝑅𝑅𝑅 -0.256 0.07 
Constant -3.442 <0.001 

 
Injury+Fatal 
Collisionsc 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.347 <0.001  
 
≈0 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.241 0.002 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.017 0.042 
𝑅𝑅𝑅𝑅𝑅𝑅 -0.265 0.06 
Constant -3.498 <0.001 

a All collision severities and all impact types. 
b All collision severities corresponding to a specific impact type. 
c All collision impact type corresponding to a specific severity level. 
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3.2 EB Before-and-After Approach 
As explained earlier, for the EB study, NB regression was first performed using the data of the 40 intersections in the 

reference (untreated) group only using STATA software. Independent variables with a p-value greater than 0.10 were 
removed from the model one at a time. AIC was used to compare the models’ goodness-of-fit, where smaller AIC values 
suggest a better fit. Table 2 presents the final models for annual collision frequencies classified based on impact type and 
severity level. 

Having established the SPFs based on the reference group data, the number of expected collisions if the treatment was 
not implemented and the percentage of change of collision frequency was estimated for the treated sites as shown in Table 

3. Based on these results, RLCs on average increased total collisions by about 9%. However, considering collision 
severity, a reduction of 10% was observed in injury and injury+fatal collisions, while PDO collisions increased by 16%. The 
results also indicate that RLC significantly increased sideswipe and rear-end collisions by about 39% and 7%, while 
significantly reducing angle collisions by about 15%. The results also indicate that RLC increased single motor vehicle 
collisions by 12%, the 95% confidence interval for the treatment effectiveness (𝜃𝜃) is 0.87-1.37, suggesting that this effect is 
not statistically significant at a 5% level of significance. 

 
Table 2: Final SPF Models for Annual Collision Frequency for EB Before-and-After Study 

 

Final Model Variable Coefficient p-value Dispersion 
factor 

 

Total Collisionsa 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.906 <0.001 

0.045 
𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.747 <0.001 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.187 0.009 
Constant -13.388 <0.001 

 
Rear-end Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 1.211 <0.001 
0.108 𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.838 <0.001 

Constant -18.192 <0.001 
 

Angle Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 0.840 <0.001 

0.237 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.014 0.008 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.558 <0.001 
Constant -7.836 <0.001 

 

Sideswipe Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 1.593 <0.001 

0.064 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.847 <0.001 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.019 0.011 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.461 0.019 
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.317 0.077 
Constant -22.359 <0.001 

Single Motor Vehicle 
Collisionsb 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.523 0.009 
0.198 Constant -5.451 0.004 

 

PDO Collisionsc 

𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.988 <0.001 

0.034 
𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 0.769 <0.001 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 -0.193 0.009 
Constant -14.657 <0.001 

Non-Fatal Injury Collisionsc 𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 1.339 <0.001 
0.116 Constant -13.139 <0.001 

Injury +Fatal Collisionsc 𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 1.325 <0.001 
0.119 Constant -12.991 <0.001 

a All collision severities and all impact types. 
b All collision severities corresponding to a specific impact type. 
c All collision impact type corresponding to a specific severity level. 
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Table 3: Safety effectiveness of RLCs at treated sites 
 

Collision impact type 
or severity level 

𝑵𝑵𝒐𝒐𝒃𝒃𝒔𝒔𝒆𝒆𝒓𝒓𝒗𝒗𝒆𝒆𝒅𝒅; 
"𝒃𝒃𝒆𝒆𝒇𝒇𝒐𝒐𝒓𝒓𝒆𝒆" 

𝑵𝑵𝒐𝒐𝒃𝒃𝒔𝒔𝒆𝒆𝒓𝒓𝒗𝒗𝒆𝒆𝒅𝒅; 
"𝒂𝒂𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓" 

𝑵𝑵𝒆𝒆𝒙𝒙𝒑𝒑𝒆𝒆𝒄𝒄𝒕𝒕𝒆𝒆𝒅𝒅; 
"𝒂𝒂𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓" 

 
𝛿𝛿 

 
𝜽𝜽 

95%confidence 
interval of 𝜽𝜽 

lower upper 
Total Collisions a 194 195.5 178.4 -17.1 1.09 1.08 1.11 
Rear-end b  24 78.5 71.8 -6.7 1.07 1.04 1.11 
Angle b 85.66 71.2 82.0 10.8 0.85 0.82 0.89 
Sideswipe b 73.66 32.4 22.9 -9.5 1.39 1.27 1.51 
Single Motor Vehicle b 9.66 10.5 9.1 -1.4 1.12 0.87 1.37 
PDO c 149.33 156.3 133.0 -23.3 1.16 1.13 1.18 
Non-Fatal Injury c 43.33 39.2 43.0 3.8 0.90 0.84 0.96 
Injury+Fatal c 43.66 39.2 43.3 4.1 0.90 0.84 0.96 

𝑁𝑁𝑜𝑜𝑏𝑏𝑠𝑠𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑑𝑑;"𝑏𝑏𝑒𝑒𝑓𝑓𝑜𝑜𝑟𝑟𝑒𝑒" = average annual observed collisions in the “before” period on treated sites. 
𝑁𝑁𝑜𝑜𝑏𝑏𝑠𝑠𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑑𝑑;"𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟" = average annual observed collisions in the “after” period on treated sites. 
𝑁𝑁𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑;"𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟" = average annual expected collisions in the “after” period on treated sites if treatment was not implemented. 
𝛿𝛿 = percentage change in safety due to the treatment (𝑁𝑁𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑;"𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟" minus 𝑁𝑁𝑜𝑜𝑏𝑏𝑠𝑠𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑑𝑑;"𝑎𝑎𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟"). 

 Indicates an increase in annual collision frequency. 
 Indicates a reduction in annual collision frequency. 

 
4 Concluding Remarks 

This paper presented a study to assess the safety impacts of RLCs at signalized intersections in the City of Ottawa, 
Ontario, Canada. The analysis utilized collision records for objective safety analysis using regression analysis approach and 
EB before-and-after study data. While the regression analysis approach of collision data on treated intersections showed that 
the presence of RLCs reduced angle, injury, and fatal collisions, the effect of RLCs on other impact types and severity levels 
was found to be insignificant. On the other hand, the EB before-and-after study showed a significant impact for RLCs, where 
total collisions increased by about 9% and PDO collisions increased by 16%. However, injury and injury+fatal collisions 
decreased by about 10%. The results also indicated that RLC increased sideswipe and rear-end collisions by about 39% and 
7% while significantly reducing angle collisions by about 15%. Both regression analysis and EB approaches indicated that 
the presence of RLCs decreased angle, injury, and fatal crashes. These results of the EB study are in general agreement with 
many studies in the literature. The difference between the regression analysis and EB approaches may have resulted from the 
relatively small number of treated sites for which collision data were available. This small sample size could have affected the 
reliability of the regression analysis approach. In summary, the results of this study suggest that RLCs at signalized 
intersections reduced severe collisions involving injury or fatality while increasing PDO collisions. 
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