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Abstract - Transportation networks play a vital role in society's well-being. While in the past, transportation networks were considered 
fragile only against threats in physical space (e.g., natural hazards), this is no longer the case. Previous events (e.g., Denial of Services 
attack against the Swedish Transport Administration) have highlighted the susceptibility of transportation domain to cyber-attacks. The 
integration of Internet of Things based wireless sensor networks in the sensing layer of a critical transportation infrastructure, increase 
the vulnerability of transportation networks to cyber-physical attacks. Current vulnerability assessment studies that treat transportation 
networks in the form of a graph (i.e., nodes, edges), overlook the security issues. In this paper, a new vulnerability assessment approach 
for transportation network subjected to cyber-physical attack, is proposed. The novelty of the approach relies on the consideration of 
vulnerabilities states, both in physical and cyber space, using a Bayesian network attack graph. A new probability indicator, that considers 
different attacker characteristics (e.g., skills) and control barriers (e.g., cameras) is proposed to drive the assignment of probability scores 
to vulnerability states. Following the probability-based ranking table, we measure the vulnerability of transportation network as a drop 
of network efficiency, after the removal of the highest probability-based ranked nodes. A transportation network case study is used to 
demonstrate the application of the approach. Monte Carlo simulations are performed as a method to evaluate the results, that indicate that 
transportation networks are probabilistically more susceptible to cyber-physical attacks, when IoT enabled transportation infrastructure 
is based on deficient control barriers. The approach is of interest to stakeholders (i.e., operators, civil and security engineers) who attempt 
to incorporate the cyber domain in vulnerability assessment procedures of their system. 
 
Keywords: Transportation network; Vulnerability; Cyber-physical attacks; Internet of Things; Bayesian network attack graph; 
Efficiency; Monte Carlo 
 
1. Introduction 

Transportation networks are fundamental to the efficient and safe functioning of modern societies and rely on the stable 
operation of critical transportation infrastructure (e.g., bridge, road etc) as integral parts of public transportation network. 
Therefore studies related to vulnerabilities of the transportation network is of major importance [1]. However, studies mainly 
focus on threats derived from physical space, such as man-made attacks (e.g., bombing) or natural hazards (e.g., earthquake) 
[2], treating cyber space as an isolated environment. Both research studies [3], [4] and previous events, such as the two-days 
Denial of Services attack (DoS) against the Swedish Transport Administration that led to major delays [5], have highlighted 
the susceptibility of transportation domain to cyber-attacks that impact the physical space (i.e., cyber-physical attack). The 
consistent operation of critical transportation infrastructure (e.g., bridges) in physical space relies more and more on advanced 
technologies (e.g., Internet of Things (IoT)) and subsequent in cyber space. Indeed, transportation infrastructure is embedded 
with IoT devices in the form wireless sensor network (i.e., IoT based wireless sensor network (WSN)), to provide data in 
real time for wireless engineering services such as early warning systems against hazards (e.g., foundation scour), or wireless 
structural health monitoring [6]. Therefore, the successful transition from traditional transportation network to a cyber-
physical transportation network, depends on the operation of sensing layer as an integral layer of IoT architecture system 
[7]. Specifically sensing layer, includes the IoT devices (e.g., sensors) deployed in the sensing area of the transportation 
infrastructure (e.g., deck of a bridge), that detect, collect, and process data to the end-user. 

Despite the benefits of IoT enabled transportation infrastructure, it suffers from the inherent security deficiencies of IoT 
devices (e.g., lack of authentication mechanisms) in the sensing layer. Those can be exploited by attackers, who target to 
breach the confidentiality, integrity and availability of data. Studies related to security issues in transportation networks have 
raised security awareness due to security issues of transportation systems such as smart traffic lights [8]. However, there is 
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a lack of research focusing on vulnerability assessment of transportation network to cyber-physical attacks against IoT 
enabled transportation infrastructure.  

To bridge this gap, a new vulnerability assessment approach for transportation network subjected to cyber-physical 
attacks at the sensing layer, is proposed in this paper. Transportation network in this approach is represented in the form 
of a graph with a set of nodes being the target of the cyber-physical attack, that are connected through edges. The 
approach is based on a Bayesian network (BN) attack graph [9], that enables the modeling of vulnerabilities states in a 
probabilistic manner, combining cyber and physical space for the first time. Assignment of probability scores to 
vulnerability states, is accomplished based on a proposed probability indicator (PI). The PI assists stakeholders towards 
the detailed assignment of probability score, considering the attacker, under certain profile characteristics (e.g., motives), 
and the control barriers that protect the vulnerability state (e.g., protection of physical area through cameras). Following 
the probabilistic analysis, a probability-based ranking table is developed, that describes the most vulnerable nodes to the 
considered cyber-physical attack. Vulnerability of transportation network is then measured as a drop of efficiency, after 
the removal of the highest probability-based ranked nodes. We demonstrate the application of the approach by measuring 
the vulnerability of an illustrative transportation network, as a case study. Monte Carlo simulations are performed, as a 
method to evaluate the results, indicating that transportation networks relying on IoT enabled transportation 
infrastructure that lacks control barriers, are probabilistically more susceptible to cyber-physical attacks.  

 
2. Related work 

A review of related work within the area of vulnerability assessment of transportation networks is presented in this 
section. The unforeseen nature of attacks against transportation networks, necessitates the use of static analysis. A static 
analysis requires the removal of nodes, following a centrality measure-based ranking (e.g., descending order of node degree) 
and the evaluation of changes in certain transportation indexes (e.g., connectivity), as a vulnerability measure. For example, 
Zhang et al. [10] proposed the removal of nodes following a ranking of descending node degree in the Shanghai metro to 
measure the vulnerability as a drop of network connectivity. Cai et al. [11] considered the travel time and passenger flow, in 
a topological vulnerability analysis, to measure the vulnerability of the Beijing metro network as drop of network efficiency. 
Although these studies succeed in assessing vulnerability of transportation network, availing of topological attributes in 
physical space, they are impractical when security issues should be considered. In contrast, this work studies the susceptibility 
of transportation network due to security issues of IoT enabled transportation infrastructure in cyber space. 

Within the domain of security of transportation network, Ghena et al. [12], managed to raise security awareness due to 
the increasing number of cyber vulnerabilities in transportation systems (e.g., traffic lights). In order to analyze the security 
of traffic infrastructure, a case study was used in cooperation with a road agency in Michigan, USA, highlighting the number 
of existing vulnerabilities in traffic systems. Similarly, Laszka et al. [13] studied the vulnerability of a transportation network 
to traffic signal tampering attacks. The proposed approach is based on an attacker model, relying on certain characteristics 
(e.g., goal of the attacker), a traffic model and an algorithm responsible for computing optimal attacks. Vulnerability is then 
measured as drop of total travel time of the network, considering the worst-case attack and the default travel time. Comert et 
al. [14], developed a belief-network-based attack modelling at signalized traffic networks under connected vehicle and 
intelligent signals frameworks. Vulnerability scores for signal controllers’ equipment (e.g., sensor), as part of the Bayesian 
network, were based on metrics (i.e., low) resulting in the quantification of impact (e.g., delays). 

Although related work succeeds in raising awareness for the susceptibility of transportation networks to different type 
of threats, they have certain deficiencies. Firstly, cyber space is treated as an isolated environment, focusing on certain 
topological attributes from physical space. Studies related to security issues, overlook the security issues of IoT enabled 
transportation infrastructure and rely on limited attacker characteristics [13]. In contrast, this approach considers the security 
issues of IoT enabled transportation infrastructure for the first and detailed attacker profiles.  

 
3. Overview of vulnerability assessment approach 

The proposed vulnerability assessment approach, targets to assist stakeholders (i.e., operators, civil and security 
engineers), who act as assessors, towards the vulnerability assessment of an IoT enabled transportation network subjected to 
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cyber-physical attacks at the sensing layer. In this novel approach the transportation network is in the form of a graph G(N, 
E) with a set of N nodes (i.e., ni) that represent the IoT enabled transportation infrastructure, as potential targets of a cyber-
physical attack, and edges (i.e., ei) that represent the distance between the nodes. 

As shown in Figure 2, the approach includes five activities. The first activity (i.e., Selection of a sensing area cyber-
physical attack scenario) describes the selection of a cyber-physical attack scenario. The activity is facilitated by using public 
available catalogues of common attack patterns (e.g., CAPEC [15]]) and current theoretical or experimental studies. The 
second activity (i.e., Division of cyber-physical attack scenario into vulnerability states in physical and cyber space), is 
based on the BN attack graph that details the vulnerability states, in both physical and cyber space, that should be exploited 
by the attacker, to accomplish the selected cyber-physical attack scenario (i.e., First activity). The third activity (i.e., 
Development of conditional probability table (CPT) for every node i) necessitates the development of CPT, as part of the 
Bayesian network. The fourth activity (i.e., Calculation of probability indicator (PI)), describes the calculation of the 
proposed PI, that will enable assessors to assign a probability score to every vulnerability state. The ratio considers both a 
detailed attacker profile and the physical and cyber control barriers that protect every vulnerability state. In the fifth activity 
(i.e., Removal of nodes based on probability-based rank and vulnerability assessment as drop of efficiency), we measure 
vulnerability of transportation network as loss of efficiency, after the removal of the highest probability based ranked nodes 
[16]. The fourth and fifth activities are further described in section 3.1 and section 3.2.  

 

 
Fig. 1: Process diagram of proposed vulnerability assessment approach 

3.1. Calculation of probability indicator  
Traditionally, it is common practice for expert(s) who have bespoke knowledge of the system, to determine the 

probability scores. To enable a more detailed assessment, we propose the integration of PI that acts as a ratio, as shown in 
Equation 1. The numerator of PI, is equal to the weighted average of the level of attacker who targets to exploit the 
vulnerability state and has been detailed in our previous work [3]. In summary, it builds on the level (i.e., Xi) and the 
importance index (i.e., Wi) of the following characteristics namely, Knowledge (i.e., XKN, WKN) (i.e., describes cyber skills, 
attack methods etc) , Resources (i.e., XRE, WRE) (i.e., describes budget, manpower etc), Psychology (i.e., XPS, WPS) (i.e., 
describes the motives), Terrorism experience (i.e., XTe, WTe) (i.e., describes the ability of attacker to remain undetected in 
public areas and the ability of gaining access to sensitive critical information infrastructure). These characteristics enable the 
assessment of classified attacker profiles that act against critical infrastructure such as Basic-users, Cybercriminals, Nation-
States, Hostile organizations [17]. The denominator of PI is equal to the level of control barriers (i.e., Xcb), that protect the 
vulnerability state from being exploited in the physical and cyber space. Physical control barriers describe traditional 
protection measures (e.g., perimeter protection) that have been applied in the past, or advanced protection measures (e.g., 
smart video-surveillance) that have been designed for cyber-physical system protection. We divide physical control barriers 
to those based on; i) technological operation such as CCTV systems, motion detectors, line crossing, smart video-
surveillance and ii) non-technological or human operation such as perimeter protection, continual inspection from trained 
personnel [18]. Cyber control barriers protect vulnerabilities of IoT devices and are related to the level of encryption (i.e., 
prevent an attacker from violating data confidentiality and control IoT devices), authentication, access control, energy 
resources, proper patch management and audit mechanisms. Further details can be found in [19].  
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PI = Weighted average attacker level
Control barrier level

=
WKN×XKN+WRE×XRE+WPS×XPS+WTe× XTe

WKN+ WRE+ WPS+ WTe
XCB

                   (1)        
                        

A rating scale (i.e., Very Low (00.01-0.20) etc.) similar to our previous work [3], is applied to assign values to Xi, Wi and 
enable the calculation of PI, as shown in Table 1.  

                                                 Table 1. Rating scale per level Xi, and importance index Wi 

Rating scale level/Level Xi Rating scale level/Importance index Wi 
Low /1 Very Low / 0.01–0.20, Low / 0.21–0.40 
Medium / 1-2 Medium / 0.41–0.60, High / 0.61–0.80 
High / 2-3 Very High / 0.81–1.0 

 
Based on the calculation of PI for very vulnerability state, the probability scores should range within the values shown in 
Table 2. It is evident that a greater attacker level with a lower control barrier level will result in higher values of PI. 

                                                    Table 2. Range of PI and probability scores 

Range of PI Range of probability scores 
0 ≤ PI ≤ 0.33 0≤ P(i) ≤ 0.25 
0.33 ≤ PI ≤ 1 0.25≤ P(i) ≤ 0.50 
PI = 1 P(i) = 0.50 
1≤ PI ≤ 2 0.50≤ P(i) ≤ 0.75 
2≤ PI ≤ 3 0.75≤ P(i) ≤ 1.0 

 
The assigned probability scores facilitate the numerical use of BN attack graph that enable the update of posterior 
probabilities. Application of the chain rule of probability theory allows to factorize joint probabilities, for a set of v vertexes, 
from X1 to XV, as shown in Equation 2. Pa(Xi) is the collection of all parent vertexes of the vertex Xi. 
 

                                                   P(X₁, X₂, … , Xv) =  ∏ P(Xin
i=1  | Pa(Xi)) × Xi × Xv                                                          (2)               

  
3.2. Calculation of transportation network efficiency 

 The efficiency of a transportation network in the form of a graph (i.e., E(G)) considers the distance between node 
pairs and is mathematically computed as shown in Equation 2 [16] . 

 
                                                  E(G) =  1

N×(N−1) ×  ∑ 1
diji≠j ∈G                                                                                           (3) 

 
where, N represents the number of nodes in the network graph and dij represents the shortest distance between node pairs. 
E(G) varies in the range [0 -1], with values closer to 1 representing more efficient transportation networks. After the removal 
of the highest probability based ranked nodes, vulnerability is measured as loss if efficiency, as in Equation 4. E(G) and 
E’(G) represent the initial efficiency and the efficiency of the transportation network after the removal of a node. 
 
                                                                     V(G) = E(G)−E′(G)

E(G)
                                                                           (4) 

 
4. Case study of a transportation network vulnerability assessment approach 

An illustrative case study of a cyber-physical transportation network, as shown in Figure 2, subjected to cyber-physical 
attacks, is presented to demonstrate the application of the proposed vulnerability assessment approach. The topology of the 
is in the form of an undirected graph G with a set of eight nodes (i.e., N=8) that represent the IoT enabled transportation 
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infrastructure, and a set of fourteen weighted edges (i.e., E=14) that represent the geodesic distances (i.e., dij) between the 
interconnected nodes N. For the purposes of this case study, we consider that the ZigBee devices form the IoT based WSN 
of every node, as a widely used IoT technology for monitoring purposes in civil engineering infrastructures [20]. A main 
security issue of ZigBee technology relies on the key management, that enables the sniffing of security key and the 
conduction of DoS attack, that will be considered in this case study as the first activity (i.e., see Figure 1, Selection of a 
sensing area cyber-physical attack scenario). The specific exploitation has been experimentally tested with success [21]. 
Network key acts as a security mechanism in order to enable the secure communication within the devices of the ZigBee 
network (i.e., IoT based WSN) and relies on two security levels namely, High security level, in which network key is 
transmitted encrypted over-the-air and thus attack is impractical, and Standard security level, in which network key is 
transmitted unencrypted over-the-air and thus attacker can legitimately communicate with other devices and flood them with 
bogus messages resulting in a DoS attack and disruption of IoT enabled transportation infrastructure. Following the second 
activity (i.e., Division of cyber-physical attack scenario into vulnerability states in physical and cyber space), the attacker i) 
should infiltrate into the physical sensing area of critical transportation infrastructure, where the ZigBee enabled network is 
located, by overcoming the physical control barriers (i.e., see Section 3.1) that are based on non-technological or human 
operation (i.e., State A, VA) and technological operation (i.e., State B, VB) ii) should capture the over-the-air traffic and parse 
the network key by using packet sniffers, by overcoming the cyber control barriers, that rely on either the Standard or High 
security level (i.e., State C, VC) and iii) conduct a DoS attack, overcoming the cyber control barriers that rely on the energy 
resources level and audit mechanisms (i.e., State D, VD). Third activity (i.e., Development of conditional probability table 
(CPT) for every node i), is then performed, to develop the CPT for every node i of transportation network. In figure 2, the 
BN attack graph and CPT for node 6, where VA, VB, VC, VD should be exploited (i.e., True as T, False as F), are illustrated.  

 

 
Fig. 2: Transportation network case study and development of CPT through BN attack graph, for node 6 

Fourth activity (i.e., Calculation of probability indicator (PI)), enables the assignment of probability score (i.e., see Table 
2). Nation-states, are considered as common attackers against critical infrastructure [17], and corresponding levels of profile 
characteristics can be assigned, as shown in Table 3. Nation-State is generally characterized as an attacker with high level of 
access to sensitive information or resources, strong motives (e.g., political) and cyber skills.  For State A and State B (i.e., 
physical space), State C and State D (i.e., cyberspace), the level of profile characteristics of Terrorism experience (i.e., XTe) 
and Psychology (i.e., XPS) are High level (i.e., 2-3) in the rating scale (i.e., see Table 1). As shown in Table 3, Terrorism 
experience is of very high importance (i.e., WTe varies to 0.81-1.0). Psychology is of high importance (i.e., WPS varies to 
0.61-0.80) towards the successful exploitation of every state. For State C and State D, the associated level of Knowledge 
(i.e., XKN) and Resources (i.e., XRE) are High level (i.e., 2-3). The possession of cyber skills (i.e., Knowledge) through the 
exploitation of vulnerability State C and D is of very high importance (i.e., WKN varies to 0.81-1.0). The possession of budget 
is of very low importance (i.e., WRE varies to 0.01-0.20) as it only requires access to packet sniffers.  

                                     Table 3. Case study attacker characteristics level per vulnerability state 

Vulnerability 
state 

Characteristic / Level 

A-B-C-D Terrorism experience / (XTe=2-3, WTe=0.81-1.0), Psychology / (XPS=2-3, WPS=0.61-0.80) 
C-D Knowledge / (XKN=2-3, WKN=0.81-1.0), Resources / (XRE=2-3, WRE=0.01-0.20) 
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The level of control barriers (i.e., XCB) with respect to every vulnerability state in physical or cyber space, is described in 
Table 4 and should be assigned by stakeholders who have bespoke knowledge of their system. For example, Node 6, is 
protected by physical control barriers that relies on; i) advanced non-technological or human operation barriers, including 
perimeter protection, continual inspection from trained personnel and, ii) advanced technological operation barriers including 
smart video-surveillance and motion detectors. Therefore, XCB for the vulnerability States A and B vary to a high level (i.e., 
2-3). Additionally, Node 6, is protected by cyber control barriers that rely on; i) high levels of security (i.e., network key is 
transmitted encrypted over-the-air) and ii) critical audit mechanisms that ensure the inspection and maintenance level of 
energy resources. Therefore, XCB for the vulnerability States C and D are High level (i.e., 2-3). Similarly, different control 
barriers have been considered for every individual node of transportation network case study. Details for node 6, 4, 1 and 8 
have been provided in Table 4, as an example.  

Table 4: Description and level of control barriers per vulnerability state for node 6,4,1 and 8 

Number 
of Node 

Vulnerability 
state 

Control barriers / Level (XCB) 

 
6 

A, B Continual inspection from trained personnel and perimeter protection/ (High, 2-3), 
Smart video-surveillance / (High, 2-3) 

C, D High security level / (High, 2-3), 
Continual audit mechanisms (High, 2-3) 

 
4 

A, B Continual inspection from trained personnel and perimeter protection/ (High, 2-3), 
Lack of technological operation barriers - State B does not exist 

C, D High security level / (High, 2-3), 
Poor audit mechanisms / (Low, 1) 

1,8 A, B Rare inspection from trained personnel / (Low, 1), 
line crossing (Low, 1) 

C, D Standard security level / (Low, 1), 
Poor audit mechanisms / (Low, 1) 

 
Based on Tables 3,4, we calculate the PI for every vulnerability state (e.g., PIA as for probability indicator for vulnerability 
state A, etc) in order to assign a detailed probability score (i.e., see Table 2). Monte Carlo simulations are performed in order 
to calculate the probability scores for every vulnerability state of every node i and with the use of Equation 1, we calculate 
the total probability score. Table 5 presents the results of the overall process and the total probability score for every Node i 
in a descending probability-based ranking. The ranking probabilistically indicates the nodes that are most vulnerable to the 
considered cyber-physical attack. Table 5 demonstrates that the existence of higher-level control barriers, both in physical 
and cyber space, results in a low probability of successful exploitation (i.e., P(6)=0.06), while deficient control barriers in 
physical and cyber space results in a high probability of successful exploitation (i.e., P(8)=0.60).  

Table 5: Probability based ranking of successful attack in a descending order for every Node i 

Node Probability of successful attack for Node i, P(i) 
8 P(8) = 0.60 
1 P(1) = 0.57 
7 P(7) = 0.27 
3 P(3) = 0.22 
4 P(4) = 0.22 
2 P(2) = 0.21 
5 P(5) = 0.12 
6 P(6) = 0.06 

 
To perform the fifth activity (i.e., Removal of nodes based on probability-based rank and vulnerability assessment as drop 
of efficiency), we remove the nodes based on a probability-based rank and assess the vulnerability of transportation network 
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as drop of efficiency using Equation 3, 4, as presented in Table 6. To calculate initial efficiency and efficiency after the 
removal of a selected node, the shortest path distance (i.e., dij) between all set of nodes is applied, considering that every 
edge has a weight equal to one. For example the shortest path distance between node 1 and node 5 is equal to two, as node 3 
acts as a bridge between them (i.e., d15=2). Results indicate that the case study transportation network is more vulnerable to 
the example sensing layer attack, when node 6 is successfully attacked (i.e., drop of network efficiency by 30.6%) although 
it has been ranked as the probabilistically less vulnerable node (i.e., P(6)=0.06, see Table 5). In contrast the case study 
transportation network is less vulnerable to the example sensing layer attack, when Node 1 is successfully attacked (i.e., drop 
of network efficiency by 20.1%), although it has been probabilistically ranked as the second most vulnerable node (i.e., 
P(1)=0.57, see Table 5). This aligns with the notion of cyber-physical attack, that can result in unforeseen degradation of 
serviceability level of victimized cyber-physical system [22].  

Table 6: Case study vulnerability assessment as drop of efficiency for every Node i 

Initial 
efficiency 

E(G) 

Efficiency E’(i) 
after node removal 

Vulnerability assessment 
as drop of efficiency (%) 

 
 
 

0.369 

E’(8)= 0.283 V(8)=23.3% 
E’(1)= 0.295 V(1)=20.1% 
E’(7)= 0.283 V(7)=23.4% 
E’(3)= 0.265 V(3)=28.2% 
E’(4)= 0.279 V(4)=24.2% 
E’(2)= 0.283 V(2)=23.3% 
E’(5)= 0.256 V(5)=30.6% 
E’(6)= 0.256 V(6)=30.6% 

 
5. Conclusion 

Transportation networks are gradually transforming to cyber-physical systems due to the merging of IoT enabled 
devices. IoT devices improve the operation of transport networks but also increase their susceptibility to cyber-physical 
attacks. Existing studies in vulnerability assessment of transportation network overlook the security issues of IoT enabled 
transportation infrastructure. To address this gap, a novel vulnerability risk assessment approach is proposed. The approach 
is based on a BN network attack graph, that enables to integrate both physical and cyber space for the first time. To enable 
accurate assessment of vulnerability states, the ratio PI that considers a detailed attacker profile and control barriers from 
cyber and physical space is proposed. The probabilistic based ranking table, enable to identify the most vulnerable nodes and 
measure the vulnerability of transportation as drop of efficiency after their removal. A case study of a transportation network 
subjected to a cyber-physical attack was applied to demonstrate the usefulness of the approach. Results from Monte Carlo 
simulations indicate that IoT enabled transportation that lacks control barriers in physical and cyber space are 
probabilistically more vulnerable, resulting in drop of transportation network efficiency. Overall, the proposed transportation 
vulnerability assessment approach subjected to cyber-physical attacks can constitute a valuable method for stakeholders who 
target to integrate the cyber domain in the assessment process of transportation network. 
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