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Abstract - The fire hazard is a permanent threat to structures. Given the use of concrete in many structures, fire constitutes a considerable 

risk since it leads to a sudden collapse in these structures. If concrete made using Portland cement is subjected to heat, it experiences a 

number of transformations and reactions even in the case of a moderate temperature rise. Since aggregate occupies usually 65%-75% of 

concrete volume, the behavior of concrete at high temperatures is strongly dependent on the aggregate type. Therefore, the mix design 

of the fire-resistant concrete is of great importance. Obtaining a mix design capable of handling high temperatures requires the preparation 

of various concrete samples with different mix designs, which is both costly and time-consuming. Instead, simulating such tests in 

numerous iterations and performing the involved computations via simulation software results in cost savings and high accuracy. The 

present research used MATLAB modeling to obtain the compressive and tensile strengths of fiber-reinforced lightweight concrete 

containing metakaolin for various percentages of cement, gravel, sand, superplasticizer, and polypropylene fibers at high temperatures. 

The multilayer perceptron artificial neural network was employed for this purpose. The neural network was trained with 7 input layers, 

2 output layers, and 1 hidden layer. As a result, it reached estimation accuracies of 99.06% and 97.16% for the training and testing data, 

respectively, and 99.05% for all the data, indicating the efficiency of the selected network. 

  
Keywords: Artificial neural network, high temperatures, lightweight concrete, polypropylene fibers, metakaolin 

 

1. Introduction 
It is expected that authors will submit carefully written and proofread material. Careful checking for spelling and 

grammatical errors should be performed. The number of pages of the paper should be from 4 to 8. 

Papers should clearly describe the background of the subject, the authors work, including the methods used, results and 

concluding discussion on the importance of the work. Papers are to be prepared in English and SI units must be used. 

Technical terms should be explained unless they may be considered to be known to the conference community. 

 

The materials constituting concrete possess low thermal expansion coefficients. This enables concrete to transfer heat 

very slowly and, as such, act as protection against heat.  As a result, the appropriate selection of constituents can help make 

concrete fire-resistant.  Aggregate composition is a significant factor in this regard. The use of special aggregates can improve 

the fire resistance and strength of concrete. Resistance to fire in concrete can be enhanced in various ways. Concrete made 

of Portland cement loses most of its properties when exposed to fire at temperatures higher than 300°C. Aggregates, which 

are commonly used in concrete, offer thermal stability up to a temperature of 300°C or 350°C.  Moreover, concrete totally 

loses its structural function at temperatures higher than 600°C. The parameters controlling thermal performance are the 

aggregate type and free moisture in the concrete. The aggregate properties affecting concrete behavior at high temperatures 

include physical properties, such as thermal conductivity and thermal expansion, chemical properties, such as chemical 

stability at temperature, and thermal stability or integrity. At high temperatures, the hydrated cement in concrete is gradually 

dehydrated, and the concrete returns to water (vapor) and cement. This reduces the strength and the modulus of elasticity of 

the concrete. The use of natural and artificial lightweight aggregates in concrete preparation leads to cost-savings and in 

addition to weight reduction. This, in turn, results in a decrease in the dimensions of the load-bearing elements, the required 

amount of rebar, and transportation costs and an increase in fire resistance compared to normal concrete. Fiber-reinforced 
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concrete possesses such properties as excellent strength, high ductility, high energy absorption capacity, and cracking 

stability. Modern technology helps mankind to perform tasks faster, more accurately, and at a lower cost. The present 

paper aims to take a step in this direction by using artificial neural network (ANN) and experimental work. To this end, 

ANN and experimental results were used to predict the compressive and tensile strengths of fiber-reinforced concrete 

containing metakaolin (MK) at elevated temperatures.  

Ayaz Ahmad et al. [1] compared the performance of supervised machine learning algorithms in predicting the 

compressive strength of concrete at high temperatures. They demonstrated that high temperatures reduce the strength of 

concrete. Meisam Bayat and Ali Delnavaz [2] predicted the lateral load capacity of steel shear walls (SSW) using ANN 

models with an accuracy of 96%. Using modeling in Abaqus, they modeled 144 different SSW samples with parameters 

such as plate thicknesses, stiffener thickness, diagonal stiffener distance, horizontal stiffener distance, and gravitational 

load as ANN inputs and determined the load-carrying capacity of the SWW as the ANN target. Muhammad Tufail et al. 

[3] investigated the effect of various coarse aggregates, namely limestone, quartzite, and granite, on the mechanical 

properties of the concrete subjected to high temperatures ranging from 95°C to 650°C. Granite concrete exhibited a 

higher compressive and tensile strength and modulus of elasticity at all test temperatures compared to quartzite and 

limestone concretes. Chi-Sun Poon et al. [4] conducted an experimental investigation on MK concrete at temperatures 

of up to 800°C. To this end, 8 normal and high-strength (HSC) concrete samples with 0, 5%, 10%, and 20% MK were 

prepared.The residual compressive strength, chloride ion penetration, porosity, and average pore size were measured 

and compared to those of other concrete mixes made of silica fume (SF), fly ash (FA), and ordinary Portland cement 

(OPC). According to the results, after an increase in compressive strength at 200°C, MK concrete experienced a larger 

drop in compressive strength and permeability-related durability compared to SF, FA, and OPC concretes.  In the 400°C-

800°C range, MK concrete suffered a large loss in compressive strength and had less residual strength compared to the 

other concretes. The effect of elevated temperature on the compressive strength of structural lightweight concrete 

(SLWC) containing various percentages of MK was examined by Bahar Demirel et al. [5]. Based on the results, the 

compressive strength increased with an increase in the amount of MK used in the SLWC. It was determined that the 

optimal MK/C ratio was about 18%. All the concrete samples exposed to high temperatures suffered strength loss. 

Nevertheless, the rate of strength loss decreased with an increase in the MK/C ratio. Hence, the MK/C ratios of the 

samples with minimum strength loss were optimal. Abid Nadeem et al. [6] investigated high-performance concrete 

(HPC) made of FA and MK at high temperatures and reported major strength and durability loss after 400°C for all 

mixtures. They concluded that a temperature of 400°C can be considered the critical temperature for a change in the 

properties of HPC. Sadegh Mehdipour et al. [7] demonstrated that a mixture of MK and steel fiber (SF) in concrete not 

only improves the mechanical properties and durability of rubberized concrete at elevated temperatures, but also 

introduces more environment-friendly mixtures compared to normal concrete by decreasing CO2 emission. 

Abdulrahman Albidah et al. [8] studied the behavior of MK-based geopolymer concrete at room temperature and 

temperatures above 200°C, 400°C, and 600°C. Their results indicated that, in all the mixtures, compressive strength 

decreased faster when the temperature exceeded 200°C. Nonetheless, the rate of decrease was lower when the 

temperature rose from 200°C to 400°C and from 400°C to 600°C. Olatokunbo M. Ofuyatan et al. [9] used the response 

surface method (RSM) and ANN to predict the mechanical properties of self-compacting concrete (SCC) with SF 

partially replacing cement and polyethylene terephthalate (PET) solid waste partially replacing sand. Their parity plots 

showed that neither ANN nor RSM exhibits prediction bias. However, ANN proved superior as a result of its higher 

accuracy and better suitability to the dataset. The present study mainly aims to examine the ANN approach to the 

accurate prediction of compressive and tensile strength in fiber-reinforced concrete containing MK at high temperatures. 

Apart from crystalline transformations occurring in aggregates during heating, a number of degradation reactions happen 

mainly in the cement paste, leading to gradual failure in the concrete structure. Sudden temperature rise results in 

significant changes in the chemical composition and microstructure of hardened Portland cement paste. These reactions 

are mostly in the form of dehydration reactions. Changes in the chemical composition and microstructure of hardened 

Portland cement paste occur gradually and continuously from room temperature up to 1000°C. With a rise in concrete 

temperature during the initial heating, considerable evaporation takes place from the larger pores near the concrete 

https://www.sciencedirect.com/topics/engineering/steel-fibre
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surface. From 100°C onward, evaporation occurs faster, and water exits from the concrete near the surface due to the vapor 

pressure being higher than atmospheric pressure. At 120°C, the expulsion of water physically trapped in smaller pores or 

combined chemically begins and continues up to about 500°C, where the process is basically complete. From 30°C to 300°C, 

hydration of the hardened cement paste (first stage) happens along with evaporation, with the maximum hydration rate 

occurring at a temperature of 180°C. Portlandite decomposition (Ca (OH)2 → CaO + H2O) takes place at 450°C-550°C [10].  

At 570°C, α → β quartz inversion occurs with an endothermic and reversible transformation. The hardened cement paste 

decomposes again between 600°C and 700°C, this time with the decomposition of the calcium-silicatehydrate  phases and 

the formation of β-C2S. The limestone begins to decarbonate between 600°C and 900°C (for instance, CaCO3 → CaO + 

CO2). The rate and temperature of decomposition depend not only on the temperature and pressure but also on the SiO2 

content in the limestone. After 1200°C and up to 1300°C, some of the constituents begin to melt. Finally, concrete exists in 

molten form between 1300°C and 1400°C. The liquefaction of concrete appears to initiate with the melting of the hardened 

cement paste followed by the aggregates, which have different melting points. Basalt exists at the lower limit of rock types 

at 1060°C, while quartzite does not melt under 1700°C [11].  

 
2. Research method 

2.1. Mix preparing and specimen curing 
Twelve cubic 100*100mm specimens were prepared according to the BS1881 standard [12] to determine the 

compressive strength. Moreover, 12 cylindrical specimens were prepared according to ASTM C597 and ASTM C496 to 

determine the tensile strength [13,14]. To this end, 12 mix designs with 0, 10, and 20 wt% lightweight concrete and 0, 0.1, 

0.4, and 0.8 wt% polypropylene (PP) fibers were prepared. The tests were designed to determine the mechanical properties 

of lightweight concrete containing MK and PP fibers at high temperatures. The amount of Leca was considered constant in 

all the mix designs.  Each mix specimen was exposed to four different temperatures. 
Moreover, all the specimens were covered with a plastic cover for 24 hours before the tests. On the test day, the concrete 

specimens were removed from water and dried for 24 hours at room temperature to determine the mechanical properties. 

During the tests, the specimens were maintained at 200°C, 400°C, and 600°C under stable conditions for one hour. The 

details of the mix designs are shown in Table 4 [15].  
 

Table 1. Mix proportion (one cubic meter) [15] 
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kg kg kg kg % kg % 

P0M0 450 0 0 228 0.5 228.3 300 186.8 180 1.05 0 0 

P0.1M0 450 0 0 228 0.5 215.4 300 181.4 180 1.14 1.8 0.1 

P0.4M0 450 0 0 228 0.5 221.7 300 160 180 1.1 3.6 0.4 

P0.8M0 450 0 0 228 0.5 228.3 300 163 180 1.72 7.2 0.8 

P0M10 405 45 10 228 0.5 221.7 300 171 180 1.23 0 0 

P0.1M10 405 45 10 228 0.5 228.3 300 181.4 180 1.23 1.8 0.1 

P0.4M10 405 45 10 228 0.5 215.4 300 176.2 180 1.26 3.6 0.4 

P0.8M10 405 45 10 228 0.5 221.7 300 163 180 1.23 7.2 0.8 

P0M20 360 90 20 228 0.5 215.4 300 186.8 180 1.42 0 0 
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P0.1M20 360 90 20 228 0.5 221.7 300 165.8 180 1.38 1.8 0.1 

P0.4M20 360 90 20 228 0.5 228.3 300 176.2 180 1.7 3.6 0.4 

P0.8M20 360 90 20 228 0.5 215.4 300 163 180 1.42 7.2 0.8 

 

Based on BS1881, the lightweight concrete specimens were subjected to compressive strength tests at 20°C, 200°C, 

400°C, and 600°C. The compressive strengths of the mixes with different MK percentages can be observed in the figure. 

Tables 2 and 3 display the compressive and tensile strength results of lightweight concrete with different percentages of 

PP fibers and MK at various temperatures. As can be seen, the 28-day compressive strength of lightweight concrete 

reduced gradually with a rise in temperature. 
 

Table 2. Compressive strength test results [15] 

Mix ID Compressive strength (MPa) 

20 °C 200 °C 400 °C 600 °C 

P0M0 14.27 16.22 15.12 10.88 

P0.1M0 15.12 15.96 15.34 9.31 

P0.4M0 17.19 18.18 16.52 9.86 

P0.8M0 19.86 18.17 16.2 10.27 

P0M10 17.2 18.08 18.02 11.86 

P0.1M10 18.05 19.16 18.09 10.84 

P0.4M10 19.16 18.18 16.56 11.74 

P0.8M10 20.14 19.07 16.19 11.65 

P0M20 16.79 17.77 16.7 10.61 

P0.1M20 17.06 18.18 16.59 10.57 

P0.4M20 18.07 17.2 15.99 10.51 

P0.8M20 19.17 18.88 15.12 10.39 

 

 

Table 3.Tensile strength results of the specimens at different temperatures [15] 

Mix ID Tensile strength (MPa) 

20 °C 200 °C 400 °C 600 °C 

P0M0 1.22 1.18 1.04 0.97 

P0.1M0 1.44 1.27 1.11 1.02 

P0.4M0 1.73 1.29 1.23 1.15 

P0.8M0 2.1 1.82 1.7 1.25 

P0M10 1.56 1.4 1.2 0.9 

P0.1M10 1.7 1.52 1.4 0.94 

P0.4M10 1.91 1.78 1.45 1.05 

P0.8M10 2.29 2.18 1.83 1.67 

P0M20 1.67 1.56 1.3 0.8 

P0.1M20 1.73 1.62 1.34 0.89 
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P0.4M20 1.91 1.76 1.41 0.94 

P0.8M20 2.36 2.31 1.93 1.36 

 

2.2. Artificial Neural Network (ANN) 
ANN is a data processing system inspired by the human brain. In this system, data is processed in small processors 

interconnected in a network and functioning in parallel to solve a problem. ANN is the basis of artificial intelligence, which 

seeks to simulate the human brain in order to solve problems deemed difficult or impossible by human or statistical standards. 

These networks possess self-learning capabilities, which enable them to achieve better results with increased data input. 

They consist of processing units with inputs and outputs. The inputs are what the ANN learns from in order to produce 

the desired output. 

ANNs are structured similarly to the human brain with nerve nodes interconnected in a web. The human brain is 

composed of billions of cells called neurons. Each neuron consists of a cell tasked with processing information. 

ANNs contain hundreds or thousands of artificial neurons, or processors, connected via synapses. The processors consist 

of inputs and outputs. The inputs receive various forms of data, and the neural network attempts to learn the information in 

order to produce outputs. 

ANNs are employed for modeling nonlinear problems. They give the inputs to mathematical functions and present 

outputs, which are usually accompanied by some error. This error can be reduced by modifying the weights of inputs via 

feedback. 
 

ANN resembles the brain in two ways: 

* It acquires knowledge from its surrounding via a learning process. 

* Weighting the interneuron connections occurs similarly to that in the information storage system in the human brain.  

  

2.3. Model description and training 
2.3.1. Dataset 
Obtaining an ANN capable of correctly predicting results requires accurate and sufficient data from influential 

parameters. For this reason, 12 specimens with varying mix designs were prepared and tested in the laboratory. Different 

percentages of cement, MK, gravel, sand, superplasticizer, and PP fibers along with temperature were considered the 7 inputs 

of the ANN, and the compressive and tensile strengths were considered the 2 outputs (Tables 1, 2, and 3). 

2.3.2. Optimal ANN structure 
The performance of an ANN depends on its structure and parameter adjustments. One of the most important issues in 

ANNs is finding the optimal structure by determining the optimal number of layers and the optimal number of neurons in 

the hidden layer via trial and error. The trial and error method is valid in this regard since no definite rule has been introduced 

for determining the optimal structure of ANNs and adjusting the parameters. 

The stop criterion for training is the mean square error (MSE), which represents the mean square of the difference 

between the model prediction (network output) and the actual (target) value. Lower MSE values reflect better performance 

of the network, with a value of zero representing error-free performance. 
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The regression values (R-values) express the strength of the relationship between the output and the target values. 

In fact, they measure the correlation between these two variables. The R-values always lie within the range (-1,1). The 

closer the correlation coefficient to 1, the stronger the correlation. 

2
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where y  denote the true values, and ŷ  represent the predicted values. A regression value of 1 means close 

correlation, while a value of zero reflects a distant correlation between the network output and the target.  

The ANN used in this study is an MLP and was trained with 7 inputs and 1 hidden layer with 5 neurons. 70% of 

the data were selected for training, 15% for validation, and the remaining 15% for testing (Fig. 1).  
 

The Bayesian Regularization algorithm, called using the nftool command, was used to train the network and 

determine the coefficients. The data were normalized using the following formula and used to design the network.  

min( )

max( ) min( )

X x
Z

x x





                                                                  (3) 

X= data from Tables 1, 2, and 3 

Z= normalized values 

Table 4 summarizes the ANN parameters used in this research. 
 

Table 4.  ANN parameters 

Description Parameter name 

MLP Neural network structure 

Bayesian Regularization Optimization function 

70% Percentage of training data 

15% Percentage of validation data 

15% Percentage of testing data 

 

3. Results and discussion 
The MSE and R-value criteria were considered the basis for selecting the optimal network. Through trial and error, 

MSE and R-values of 0.9916 and 0.00233 were obtained. 
 

The obtained optimal network was able to accurately predict the compressive and tensile strengths for the datasets 

after training. Fig. 3 depicts the actual and predicted regressions for the training, validation, and testing datasets, 

indicating the validity of the network for this dataset. 
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Figure 1. Actual versus predicted regressions for the training, validation, and testing datasets 

The outputs estimated by the program were normalized. These values were decoded using Formula 1 for comparing 

them with the true values. Specifically, the Z-values from the program output were input to Formula 1, and the X values 

were obtained. A study of the errors between the true and values predicted by the ANN indicates that the maximum errors 

for compressive strength at temperatures of 20°C, 200°C, 400°C, and 600°C were 5.11, 3.46, 5.15, and 8.24, respectively 
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(Table 5). Moreover, zero error was obtained for the tensile strength (Table 6), which demonstrates the high accuracy 

of the designed ANN. 
 

Table 5. MLP predictions 

Predicted compressive strength (MPa) 

 20 °C 200 °C 400 °C 600 °C 

Mix ID (MPa) Error (%) (MPa) Error (%) (MPa) Error (%) (MPa) Error (%) 

P0M0 14.27 -4.22 15.87 2.16 15.34 -1.42 10.68 1.85 

P0.1M0 15.12 -3.69 16.23 -1.67 15.32 0.14 9.76 -4.78 

P0.4M0 17.19 -1.63 17.96 1.23 16.37 0.90 9.89 -0.29 

P0.8M0 19.86 3.76 18.80 -3.46 15.99 1.29 10.42 -1.43 

P0M10 17.2 -0.71 18.22 -0.75 17.56 2.57 12.08 -1.88 

P0.1M10 18.05 1.90 18.53 3.28 17.47 3.41 11.73 -8.24 

P0.4M10 19.16 4.46 18.48 -1.64 16.99 -2.60 11.40 2.91 

P0.8M10 20.14 5.11 18.98 0.46 16.64 -2.76 11.37 2.44 

P0M20 16.79 -0.52 17.41 2.04 16.34 2.18 10.86 -2.40 

P0.1M20 17.06 -2.54 17.96 1.20 16.53 0.37 10.86 -2.77 

P0.4M20 18.07 1.58 17.62 -2.46 15.17 5.15 9.97 5.16 

P0.8M20 19.17 -2.66 18.60 1.47 14.87 1.68 10.48 -0.84 
 
 

Table 6. MLP predictions 

Mix ID Predicted tensile strength (MPa) 

 20 °C 200 °C 400 °C 600 °C 

 (MPa) (%) (MPa) (%) (MPa) (%) (MPa) (%) 

P0M0 1.22 0.00 1.18 0.00 1.04 0.00 0.97 0.00 

P0.1M0 1.44 0.00 1.27 0.00 1.11 0.00 1.02 0.00 

P0.4M0 1.73 0.00 1.29 0.00 1.23 0.00 1.15 0.00 

P0.8M0 2.1 0.00 1.82 0.00 1.7 0.00 1.25 0.00 

P0M10 1.56 0.00 1.4 0.00 1.2 0.00 0.9 0.00 

P0.1M10 1.7 0.00 1.52 0.00 1.4 0.00 0.94 0.00 

P0.4M10 1.91 0.00 1.78 0.00 1.45 0.00 1.05 0.00 

P0.8M10 2.29 0.00 2.18 0.00 1.83 0.00 1.67 0.00 

P0M20 1.67 0.00 1.56 0.00 1.3 0.00 0.8 0.00 

P0.1M20 1.73 0.00 1.62 0.00 1.34 0.00 0.89 0.00 

P0.4M20 1.91 0.00 1.76 0.00 1.41 0.00 0.94 0.00 

P0.8M20 2.36 0.00 2.31 0.00 1.93 0.00 1.36 0.00 
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For further analysis, the true (Tables 2 and 3) and predicted (Tables 5 and 6) values were plotted in Fig. 4. According to 

this figure. 
 

 

Figure 2. Comparison of experimental and numerical quantities 

4. Conclusion 
1. In this research, the ANN method was employed to estimate the mechanical properties of lightweight fiber-reinforced concrete 

containing MK. 

2. The 7 input parameters of the network were the percentages of cement, MK, gravel, sand, superplasticizer, and PP fibers along 

with temperature, and the 2 outputs of the network were the compressive and tensile strengths. For this purpose, data for 12 concrete 

specimens were collected from [15], which is based on experimental studies. 

3. A comparison between the values estimated by the ANN and the true values demonstrates the accuracy, efficiency, and reliability 

of the designed network. 

4. The correlation coefficient was above 99% for the training, validation, and testing datasets. This indicates the effectiveness of the 

neural network in predicting the compressive and tensile strengths of the lightweight fiber-reinforced concrete containing Mk. 

5. The maximum errors for the compressive strength data at temperatures of 20, 200, 400, and 600 were 5.11%, 3.46%, 5.15%, and 

8.24%, respectively, while an error of 0 was obtained for the tensile strength at all temperatures. 

6. Based on the results, one may conclude that the designed neural network can be used to accurately predict the compressive and, 

especially, tensile strengths of lightweight fiber-reinforced concrete containing MK. 
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