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Abstract - The equation for calculating the applied transverse moment in reinforced concrete deck slab in slab-on-girder bridges under 
truck loading in the Canadian Highway Bridge Design Code is dated back to 1930. It does not include the effect of the transverse-to-
longitudinal flexural stiffness and the torsional stiffness. In addition, the code does not provide equations for the longitudinal moment 
and deflection. This paper presents the application of the orthotropic plate theory to determine the applied transverse and longitudinal 
moment and deflection under different truck loading conditions. The key parameters considered in this study included the slab span 
ranging from 1 m to 4 m, single- or two-lane loaded with Canadian trucks, different truck axles, and transverse-to-flexural stiffness ratios 
ranging from 1 to 4. The data generated from this study was used to develop empirical equations for the transverse and longitudinal 
moments for ultimate and fatigue limit state design and deflection for serviceability limit state design.  
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1. Introduction 

Reinforced concrete decks spanning normal to traffic direction are used in slab-on-girder bridges shown in Fig. 1 [1]. In 
1930, Westergaard [2] provided the basis for the design moments in bridge slabs due to concentrated loads. He assumed that 
the concrete slab acts as a homogeneous elastic slab. The basic equation by Westergaard [2] formed the basis of the Canadian 
Standard for Design of Highway Bridges, CSA-S6-88, [3] to calculate the transverse moment in case the main reinforcement 
is perpendicular to traffic. This equation continued to be the basis for design in the Canadian Highway Bridge Design Code 
of 2019, CSA-S6:19 [1]. The unfactored live moment is obtained from this equation per meter width for a simple span as 
follows: 

 
                                                          Moment (kN.m/m) = (𝑆𝑆e + 0.6) 𝑃𝑃

10                                                                    (1) 

Where Se = slab span between girders (m), and P = 87.5 kN (wheel load of axle 4 in the CL-W truck specified in CSA-
S6:19).  

 
The 1996 AASHTO Standard Specifications for Highway Bridges [4] adopted Westergaard’s equation for the live load 

moment for simple spans using imperial units for HS 20 truck loading as follows: 
 

                                                Moment (Ib.ft /ft) = �𝑆𝑆𝑒𝑒+2
32

� 𝑃𝑃20                                                                                   (2) 
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Where P20 = the wheel load of 16 kip, and Se = the slab span (ft). 
 
 

                                  
a) Slab on steel girders                  b) Slab on precast concrete girders       c) Slab in a concrete cellular bridge 

         
Fig. 1. Deck slab span between girders (CSA, 2019). 

 
The AASHTO LRFD Bridge Design Specifications of 1998 and 2020 [5, 6] adopted another simplified method for cast-

in-place, cast-in-place with stay-in-place concrete formwork, precast and post-tensioned concrete slab deck called Equivalent 
Strip Method. The designer may analyze the deck slab as a continuous one-way slab supported over girders and subjected to 
single or twin-truck axles. Then, the resulting moment is modified by dividing it by a distribution width to obtain the live 
load bending moment per unit width. The widths of the primary strip for the positive and negative moments are specified as 
(26.0+6.6Se) and (48.0+3.0Se), respectively; Se is the spacing of supporting components in the feet.  

 
CSA-S6:19 specifies that the positive and negative longitudinal moments in the deck slab for distribution of wheel loads 

shall be taken as 120/(Se
0.5)%, without exceeding 67%, of the maximum transverse moment intensity obtained from equation 

(1). Again, this provision does not include the effect of the flexural stiffness ratio in calculations.  
 
This paper describes the parametric study, using the orthotropic plate theory, to determine the live load moments and 

deflection in concrete deck slabs between longitudinal girders when subjected to Canadian truck loading. The key parameters 
considered in this study included the slab span, single- or two-lane loaded with Canadian trucks, different truck axles, and 
transverse-to-flexural stiffness ratio. The data generated from this study was used to develop empirical equations for the 
transverse and longitudinal moments for ultimate and fatigue limit state design and deflection for serviceability limit state 
design. 
 
2. Orthotropic Plate Theory 

In bridge superstructures, due to the complexity of the distribution of forces from the deck slab to the girders, the 
analysis of the deck-girders system has been an area of research. In 1975, Cusens and Pama [7] presented a structural analysis 
method for bridge slabs based on the orthotropy plate theory by considering them an equivalent thin plate with different 
torsional and flexural properties in both orthogonal directions. They provided the solution of the following general 
differential equations for bending and twisting moments of an orthotropic thin plate [8]. 

 
                                      𝐷𝐷𝑥𝑥 ∂

4𝑤𝑤
∂x4

 + 2H ∂4𝑤𝑤
∂x2 ∂y2

 + 𝐷𝐷𝑦𝑦 ∂
4𝑤𝑤
∂y4

 = q(x,y)                                                                                   (3) 
                                                 H = D1 + 2Dxy                                                                                                                         (4) 

                                     Mx = -�𝐷𝐷𝑥𝑥  ∂
2𝑤𝑤
∂x2

+ 𝐷𝐷1  ∂
2𝑤𝑤
∂y2

�                                                                                                       (5) 

                                     My = -�𝐷𝐷𝑦𝑦  ∂
2𝑤𝑤
∂y2

+ 𝐷𝐷1  ∂
2𝑤𝑤
∂x2

�                                                                                                       (6) 

                                     Mxy = 2𝐷𝐷𝑥𝑥𝑦𝑦  ∂
2𝑤𝑤

∂𝑥𝑥 ∂𝑦𝑦
                                                                                                                     (7) 
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Where: Dx = flexural rigidity in the strong direction; Dy = flexural rigidity in the weak direction; D1 = torsional rigidity 
contribution from the strong and the weak direction rigidities; Dxy = torsional rigidity; H = sum of the torsional rigidity 
contribution from the strong and weak direction rigidities (D1) and torsional rigidity (Dxy); w(x,y) = vertical plate deflection 
in the Cartesian coordinate system; and q(x,y) = applied transverse load in the Cartesian coordinate system.  

 
The analytical solution of equation (3), depends on the value of H relative to Dx and Dy. as shown in equation (8). For 

reinforced concrete slab, the torsional parameter, α, equals 1 [9] and the solution has equal and real roots:     
 

                                                   H=𝛼𝛼�𝐷𝐷𝑥𝑥  𝐷𝐷𝑦𝑦                                                                                                                         (8) 
                                                    𝛼𝛼 = 1                                                                                                                                   (9) 

 
Bakht et al. [10] developed the PLATO program based on the solution of equation (3) by Cusens and Pama [7] and 

used the basic equations for finite plates to solve for moments and deflections at any location on the plate. The PLATO 
program was verified before using data from field tests and can be found elsewhere [11, 12]. In this research on a reinforced 
concrete slab, Poisson’s ratio was taken as 0.2 to assist in obtaining the values of D1 and Dxy based on equations (4), (8), and 
(9). 
 
3. Parametric Study 

A parametric study was conducted on a concrete reinforced deck bridge slab with a thickness of 200 mm to assist in 
obtaining a reference flexural stiffness in the strong direction of the slab, Dx. Then, using the above equations, Dy, Dxy, and 
D1 values were obtained for different values of flexural stiffness ratio, D, taken as Dx /Dy. The D values considered in this 
study were 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, and 4, while the slab span, Se, was taken 1, 1.5, 2, 2.5, 3, 3.5, and 4 m. 

 
Figure 2 shows the elevation, cross-section, and plan view of CL-W truck loading [1]. Two types of trucks were considered 
in this study: the CL-625 truck, which is used in all Canadian Provinces except Ontario, and the CL-625-ONT truck, which 
is used in Ontario for bridge design. One may notice that axles 2 and 3 of the CL-625-ONT truck are greater than those for 
the CL-625 truck by 12%. Figure 3 shows the different truck loading conditions considered in this study. PLATO program 
can model wheel loads using the footprint dimensions of the tire patches as shown in Fig. 3(a), with v = 250 mm and u = 600 
mm in the case of the wheel load of axle 4 in Fig. 2, for example. For a short slab span, one wheel was considered for the 
single-truck case as depicted in Figs. 3(b) and 3(c) using truck axle 4 and axles 2 and 3, respectively. For a wider slab span, 
two adjacent wheels for the two adjacent truck cases were considered, as depicted in Figs. 3(d) and 3(e) using truck axle 4 
and axles 2 and 3, respectively, with transverse distance between the wheels of 1.2 m. It should be noted that a third load 
case scenario, not shown in Fig. 3, considered all 5 axles of the truck applied on the deck slab in a similar fashion as those 
in Figs. 3(c) and 3(e). All these loading cases were considered for ultimate limit state (ULS) and serviceability limit state 
(SLS2) designs [1]. These loading cases were used to obtain the greatest transverse moment, longitudinal moment and 
deflection for each Se and D values mentioned earlier. For fatigue limit state (FLS) design, the Canadian Highway Bridge 
Design Code [1] specifies a single truck with only axles 2 and 3 to obtain the applied moments, with distance between wheels 
in direction of slab span of 1.8 m. In this case, the loading case in Fig. 3(c) was used for short spans (Se = 1 to 3 m), while 
the loading case in Fig. 3(f) was used for larger spans (Se = 3.5 and 4 m).    
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Fig. 2. Elevation, cross-section, and plan view of CHBDC truck loading (CL-625 and CL-625-ONT) 

 

 

Fig. 3. Orthotropic plates subjected to uniformly loaded patch loads 
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The applied wheel load was calculated as Pwheel (1+DLA) RL. Pwheel was taken as the wheel load shown in Fig. 2. The dynamic 
load allowance (DLA) was taken as 0.4 for the case of single axle, 0.3 for the case of axles 2 &3, and 0.25 for the case of 5 
axles [1]. The modification factor for multilane loading, RL, was 1 for a single truck case and 0.9 for a two-adjacent truck 
case [2].  

The deck slab under consideration has a span, being the spacing between longitudinal girders, and width equals the girder 
length. PLATO program models plates of span and width shown in Fig. 3(a). Higgins [13] showed that the deflections and 
moments diminish as the transverse distance from the load application increases, and when the distance from the load point 
is more than twice the span length, these are negligible. So, in this research, the overall plate width, B, used for the orthotropic 
plate analyses for the loading case in Fig. 3(b) was taken four times the span length (i.e., B= 2E = 4 Se). For the loading case 
in Fig. 3(c), the overall plate width used for the analyses was taken four times the span length in addition to the distance 
between axles 2 and 3 (i.e., B = 2E + 1.2 m = 4 Se).  
 
4. Results and Discussions 

The results from the parametric study were presented in the form of a transverse moment in the normal girder direction, 
Mtrans., a longitudinal moment in the direction of traffic, Mlong., and deflection, ΔL. Six loading scenarios (LS) were considered 
in this study at ULS. LS1 represented axle 4 for the single truck, as depicted in Fig. 3(b), and LS2 represented axle 4 in the 
case of two adjacent trucks, as depicted in Fig. 3(d).  LS3 represented axles 2 & 3 for single truck as depicted in Fig. 3(c), 
LS4 represented axles 2 & 3 in case of two adjacent trucks as depicted in Fig. 3(e). LS5 and LS6 are identical to LS3 and 
LS4 except all truck axles are considered. Figure 4 shows sample results for the transverse moments obtained from each load 
scenario for D of 1 and different slab spans. One may observe that the load scenario with axle 4 in a single truck case (LS1) 
produced the greatest transverse moment for slab spans up to about 2.8 m, beyond which LS4 with axles 2 &3 for twin truck 
case provided the greatest moment among other load scenarios.  

 

    
             Fig. 4. ULS transverse moment in RC slab with difference load scenarios. 

4.1. Transverse Moment 
Figure 5 compares the ULS transverse moment from different stiffness ratios, D, and the moment from equation 2 

specified in CSA-S6-19. One may observe that the transverse moment increases with the increase in slab stiffness ratio. Also, 
the transverse moment increases with the increase in slab span, as expected. The results show that the code equation does 
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not have a trend concerning the change of D values. This indicates the need to change this equation to include the flexural 
stiffness ratio as a parameter.   

 
For fatigue limit state (FLS) load scenarios, considering axles 2 & 3, Fig. 5 shows the change in the transverse 

with the change in flexural stiffness ratio and slab span. One may observe that the transverse moment increases with the 
increase in D values. As for the comparison with the code equation, it can be observed that equation (1) provides 
transverse moment greater than those obtained for all D values considered in this study. This is expected since equation 
(1) considered axle 4 of the truck which is much heavier than axle 2 or 3. This shows the necessity to develop moment 
equation for FLS design in addition to that for ULS design.  

 

         
             Fig. 5. ULS Transverse moment in RC slab with difference D ratios. 

 

          
         Fig. 5. FLS Transverse moment in RC slab with difference D ratios. 
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4.2. Longitudinal Moment 
Figure 6 compares the ULS longitudinal moment from different stiffness ratios, D, and the moment based on the criteria 
mentioned in CSA-S6-19. One may observe that the longitudinal moment increases with the increase in slab stiffness ratio, 
and slab span as expected. The results show that the longitudinal moment values obtained from the code match those obtained 
from analysis for D of 1, while it is greater than those obtained with D values greater than 1 with a significant margin. For 
fatigue limit state (FLS) load scenarios, considering axles 2 & 3, Fig. 7 shows the change in the longitudinal moment with 
the change in flexural stiffness ratio and slab span. One may observe that the longitudinal moments obtained from the code 
provision are significantly greater than those obtained from the analysis irrespective of the flexural stiffness and span values. 

 

  
Fig. 6. ULS Longitudinal moment in RC slab with difference D ratios. 

 

         
Fig. 7. FLS Longitudinal moment in RC slab with difference D ratios. 
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4.3. Slab Deflection 
Figure 8 illustrates the maximum deflection from the load scenarios in the bridge slab of different flexural stiffness 

and span lengths. One may observe that the deflection increases with increase in slab span and stiffness ratio, however, 
rate of increase is much greater with the increase in span length than the stiffness ratio.  

 

           
Fig. 8. Deflection in RC slab with difference D ratios. 

4.4. Development of Equations for Transverse and Longitudinal Moments and Deflection for CL-625 truck 
The data generated from the parametric study was used to develop empirical equations for the transverse and 

longitudinal moments for ULS and ULS, as well as the deflection at SLS2. The nonlinear curve fitting employed in 
Microsoft Excel software was used to develop the equations in Table 1. These equations were developed while ensuring 
that the maximum underestimation of the design values is less than 5% [1].  
 

Table 1: Maximum moments and deflections due to unfactored CL-625 truck wheel loads (including dynamic load 
allowance) 

Condition Design parameter Span limit Flexural rigidity ratio, D  

ULS Mtrans. = 19.1 C Se
0.58D0.25 1 m ≤ Se ≤ 4 m  

 
 
 

1 ≤ D ≤ 4 

Mlong. = 12.2 C Se
 0.84 D(-0.5) 1 m ≤ Se ≤ 2 m 

Mlong. = 11.5 C Se
 0.78 D(-0.39) 2 m ≤ Se ≤ 4 m 

FLS Mtrans. = 13.5 C Se
 0.8 D0.2 1 m ≤ Se ≤ 4 m 

Mlong. = (1.87 + 5.6 Se) D(-0.52) 1 m ≤ Se ≤ 2 m 
Mlong. = (-2.06 + 6.94 Se) D(-0.54) 2 m ≤ Se ≤ 4 m 

SLS2 ΔL = (1800 C Se
 2.3 D0.2) / Dx 1 m ≤ Se ≤ 2 m 

ΔL = (1800 C Se
 2.65 D0.2) / Dx 2 m < Se ≤ 4 m 

         Notes: C = continuity factor, taken as 1 for simple span deck slabs and 0.8 for the deck slabs continuous over three or more supports; 
            Se = deck slab span between girders; D = Transverse-to-longitudinal stiffness ration (Dx/Dy); ULS =: ultimate limit state; FLS = fatigue 
            limit state; SLS2 = second combination of serviceability limit state [1]. 
 

 



 
 

 
 

 
 

 
249-9 

3. Conclusions 
The current CHBDC code provisions provide a method for calculating the design moment in concrete slab bridge deck, 

deck, which may not provide conservative estimates of the maximum live load moment as it does include the effect of the 
the flexural stiffness ratio. A parametric study was conducted on a simply-supported slab using the orthotropic plate theory 
theory to determine the applied transverse and longitudinal moment and deflection under different truck loading conditions, 
conditions, flexural stiffness ratio, and span lengths. Results showed the drawback of the code equation. Also, results show 
that the transverse moment and deflection increase with the increase in flexural stiffness ratio while the longitudinal 
deflection decreases. The data generated from this study was used to develop empirical equations for the transverse and 
longitudinal moments for ultimate and fatigue limit state design and deflection for serviceability limit state design. 
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