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Abstract - This study explores the integration of Geographic Information Systems (GIS) and Machine Learning (ML) methods to assess 

seismic-induced damage categories of above-ground liquid storage tanks across California. A real-world damage tank dataset was 

considered to perform GIS-based spatial analysis, to identify clustering and distribution patterns. The results reveal that Southern 

California's most significant damage concentrations align with the region’s high seismic vulnerability. To predict damage categories, 

four ML classifiers were evaluated: Decision Tree (DT), Random Forest (RF), XGBoost, and Support Vector Machine (SVM). Initial 

model performance was limited due to class imbalance in the dataset. The Random Forest model showed relatively better results 

compared to the others and was further improved using the Synthetic Minority Over-sampling Technique (SMOTE) to address class 

imbalance. The enhanced model significantly improved classification performance, achieving training scores of 0.93 across all evaluation 

metrics. On the test set, the model attained a maximum precision of 0.75, a recall of 0.73, and an accuracy of 0.73. These findings 

demonstrate that combining Random Forest with SMOTE can effectively improve predictive accuracy and generalization in imbalanced 
datasets. Overall, this research highlights the practical application of GIS-based spatial analysis with ML techniques for seismic risk 

assessment and infrastructure resilience planning. 
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1. Introduction and Background 
Liquid storage tanks are a fundamental element of current infrastructure that are used for a variety of purposes, like 

providing water supply, firefighting protection, and oil and dangerous matter storage in industrial installations. Because of 

their large number, many tanks are located in seismic areas [1-2]. Overturning, buckling, damage to the roof, sliding, uplift, 

and differential settlement are some common failure modes of these structures in several strong earthquakes. This failure 

can result in catastrophic consequences, such as liquid spilling and hazardous post-earthquake fires. And if not properly 
maintained or operated, it will cause severe hazards such as economic losses, environmental pollution, and human threats 

[3]. The timely prediction of earthquake-induced damage in liquid storage tanks is of real importance. 

The response modelling and seismic induced damage assessment of liquid storage tanks are particularly challenging 
since there exists much uncertainty in the structural properties and seismic hazard parameters. High-fidelity numerical 

simulation tools, e.g., finite element method (FEM), provide a strong foundation to predict the dynamic response of tanks 

under seismic excitation with confidence [4]. The high computational costs of these models and the fact that risk must be 
assessed in the presence of several sources of uncertainty make computational risk assessment expensive and very time-

consuming. Surrogate models have been developed to mitigate the computational cost in seismic hazard estimation 

compared to high-fidelity simulations [5]. These models give simple mathematical descriptions of complex physical 

systems. Various physics-based surrogate models were developed for steel liquid storage tanks. Balakis [6] proposed a 
performance-based seismic risk assessment approach for fixed-roof steel tanks by employing a surrogate single mass model 

composed of an elastic and a nonlinear component. The author stresses the importance of fragility analysis and identifies 

issues such as non-sequential damage propagation, with an emphasis on elephant’s foot buckling. A neural-network proxy 
model was derived by Micheli and Laflamme [7] based on post-earthquake reconnaissance datasets for the estimation of 

seismic damage in steel storage tanks. The proposed cascade Neural Network (NN) model yielded better prediction 

performance than conventional models in that the cascade NN compensated for data imbalance and led to higher prediction 
accuracy at different damage levels. Quinci and Paolacci [8] developed a machine learning–based seismic risk assessment 

approach for industrial non-structural components using Artificial Neural Network (ANN) surrogate models, calibrated 

through nonlinear finite element (FEM) simulations. Their methodology integrates seismic hazard and vulnerability analyses 
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without making prior assumptions about fragility distributions. Tabish et al. [9] proposed a two-step Random Forest 

(RF) model to predict earthquake-induced damage states in liquid storage tanks. initially, a binary RF classifier predicted 
damaged and undamaged tanks, attaining training and test accuracies of 0.90 and 0.81, respectively. The second step 

employed a multi-class RF classifier with the ADASYN technique for data balancing. This enhanced approach yielded 

a training accuracy of 0.93 across evaluation metrics and a maximum test accuracy of 0.85, outperforming all other 
predicted classifier models. 

Researchers have utilized GIS for spatial analysis and damage assessment in earthquake-affected areas. Hatayama 

[10] also employed GIS to find a spatial correlation between tsunami inundation height and damage to the oil storage 

tank during the 2011 Tohoku Earthquake. This geographic analysis allowed us to understand the pattern of damages at 
the regional scale and to derive impact functions for industrial tanks. Toprak [11] employed the GIS to investigate the 

spatial damage of the earthquake on lifeline systems, including the underground pipeline system. Their research showed 

that GIS could be used to map damaged areas and improve post-earthquake infrastructure evaluation. Liu et al [12] 
employed remote sensing with GIS techniques to accurately extract tsunami-flooded zones and assess damage to 

buildings following the 2011 Tohoku-Oki earthquake. Their GIS-based spatial analysis enabled detailed mapping of 

affected areas, facilitating improved post-disaster damage evaluation. This article utilizes GIS and ML techniques to 

assess the rapid damage risk induced by the earthquake in major cities of the West Coast. California, being a vulnerable 
earthquake area with a history of earthquake-induced damage to the liquid storage tanks, has been selected to implement 

the ML learning techniques and spatial analysis using GIS. 

 

2. Database Used and Sources 
The analytical database used in this study was compiled from a post-earthquake reconnaissance report [13], which 

documented observed seismic-induced damage to above-ground liquid storage tanks. The dataset consists of real-world 
damage records across a wide range of tank structures and seismic scenarios, enabling a robust evaluation of 

vulnerability patterns and damage mechanisms. The key predictive variables in the dataset include peak ground 

acceleration (PGA), earthquake location, geometric and material properties of tanks (e.g., diameter D, height H, shell 
thickness t, H/D and D/t ratios). Additional variables include the anchorage condition (anchored vs. unanchored) and 

the liquid height at the time of the seismic event. To ensure consistency in evaluating tank damage, each record was 

classified according to the HAZUS-MH (Hazards U.S. Multi-Hazard) framework into five distinct damage categories 
(DC0–DC4) based on severity and repair cost, as developed by the American Lifelines Alliance [13]. The damage 

categories range from DC 0 (no damage) to DC 4 (complete collapse), with intermediate levels capturing common 

failure modes such as roof deformation, elephant foot buckling, anchorage and piping failures, and significant loss of 

contents. A summary of these categories is provided in Table 1, while the statistical distribution of tanks across the 
damage states is illustrated in Figure 1. The dataset comprises a total of 134 tanks, of which approximately 20% (31 

tanks) exhibited no damage (DC0). In contrast, complete collapse (DC4) was recorded in 10.2% of cases (16 tanks), 

representing a diverse and realistic range of damage severities observed in past earthquake events. 
 

3. Methodology 
 
3.1. Geographic Information System (GIS) Analysis 

To analyze the spatial clustering and distribution of earthquake-induced damage across California, a GIS-based 
approach was implemented. The dataset was first processed in ArcGIS Pro, where Excel files were converted into 

geodatabase tables using the Excel to Table tool. The resulting dataset, named CaliforniaDamage, was then joined to a 

California counties shapefile using the COUNTY attribute. As county names were unique within the dataset, the join 
produced an accurate spatial representation of damage across the state. To visualize the results, proportional pie symbols 

were used, with each pie slice representing the proportion of damage categories (DC 0 to DC 4) within each county. The 

overall size of each symbol corresponded to the total number of reported damage incidents, enabling a clear visual 

comparison of damage severity across regions. Symbol scaling and opacity were adjusted to improve boundary visibility 
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and enhance interpretability. As shown in Figure 2, the resulting spatial distribution map clearly illustrates that the most 

significant damage clusters are located in Southern California. Several counties show high proportions of severe damage 
(DC 3 and DC 4), indicated by the dominance of orange and red segments in the pie charts. In contrast, northern and 

central regions display fewer or less severe incidents, often dominated by green and blue segments (DC 0 and DC 1). 

This pattern aligns with known seismically active zones and population densities. 
 

Table 1: Damage Category Description based on HAZUS. 

 

Damage Category Description 

DC 0 No damage 

DC 1 
Damage to the roof, minor loss of content, minor shell damage, damage  
to attached pipes, no elephant foot failure 

DC 2 Elephant foot buckling with no leak or minor loss of contents 

DC 3 Elephant foot buckling with major loss of content, severe damage 

DC 4 Complete collapse 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
Fig. 1: (a) Storage tank input parameters; (b) Distribution of tank data among the mapped damage categories. 
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Fig. 2: Spatial clustering or distribution of damage concerning individual earthquakes. 

 
 
3.2. ML Classifier Models and Balancing Technique 

       Four ML models: DT, RF, XGBoost, and SVC, were used to classify the five tank failure modes (DC 0-DC 4). The full 
dataset was subjected to hyperparameter tuning to identify the best settings for each classifier model. Based on this tuning, 

a maximum depth of 5 was selected for the DT, RF, and XGBoost models. Moreover, 100 estimators were chosen in both 

RF and XGBoost to ensure a trade-off between performance and generalization. In case of the SVC model, the model 
architecture consisted of a Support Vector Classifier using a radial basis function (RBF) kernel, with a regularization 

parameter C=1.0 and automatic kernel coefficient gamma='scale'.  

Based on the results discussed in the next section, the Random Forest classifier model was identified as the best-performing 
model in terms of balancing accuracy and generalizability, despite its lower test scores compared to some alternatives. To 

further enhance its performance, particularly in addressing class imbalance, the Synthetic Minority Over-sampling Technique 

(SMOTE) was employed. SMOTE works by generating synthetic examples for the minority class, thereby producing a more 

balanced training dataset.  
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3.3. Performance Evaluation  

       The four aforementioned classifier models were applied to predict damage categories from the dataset, using a 70-30 

split for training and testing. Model performance and generalization to unseen data were evaluated using confusion matrices, 

which summarize the correct and incorrect predictions made by a classification model. The diagonal elements represent 
correct predictions (true positives and true negatives), while the off-diagonal elements indicate misclassifications (false 

positives and false negatives). 

In this study, model performance was assessed using precision, recall, and accuracy. Accuracy reflects the overall 
effectiveness of the model, whereas precision and recall provide insight into the model’s performance for each specific failure 

mode. High values across these metrics indicate a robust and reliable classification model. Representative confusion matrices 

for this multi-class classification task are presented in Figure 3. 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Typical confusion matrix for multi-classification. 

 

4. Analysis and Results 
     The model evaluation results presented in Table 3 show that the XGBoost model achieved the highest performance in the 

training set (Precision = 1.0, Recall = 1.0, and Accuracy = 1.0), indicating it could memorize the training data well. However, 
the test set results (Precision = 0.58, Recall = 0.59, and Accuracy = 0.59) demonstrate its ability to memorize the training 

data effectively. However, its performance dropped significantly on the test set (Precision = 0.58, Recall = 0.59, Accuracy = 

0.59), clearly indicating overfitting. This suggests that although the model fit the training data exceptionally well, it failed to 
generalize to unseen data, likely due to class imbalance. Similarly, the Decision Tree (DT) model exhibited poor 

performance, which may be attributed to insufficient feature learning or its sensitivity to the imbalanced dataset, as listed in 

Table 3. Random Forest model showed moderate generalization ability with an accuracy score of 0.94 (train) and 0.55 (test), 

as listed in Table 3. Compared to XGBoost, it demonstrated less prone to overfitting than XGBoost. The underperformance 
of all models is likely due to the imbalanced class distribution, as illustrated in Figure 1(b). 

To address this issue, the SMOTE balancing technique was applied in conjunction with the Random Forest classifier. This 

approach led to improved performance, with training scores reaching 0.93 across all evaluation metrics and test set metrics 
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improving to a maximum of Precision = 0.75, Recall = 0.73, and Accuracy = 0.73. These findings suggest that integrating 

SMOTE with the Random Forest classifier enhances model generalization and effectively mitigates class imbalance. The 
final confusion matrices for both the training and test datasets, shown in Figure 4, provide a detailed breakdown of each 

model’s classification performance across different damage states. 
 

 

Table 3: Results comparison of different ML classifier models. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig. 4: SMOTE-RF confusion matrix for (a) Training set (b) Test set. 

  

Model 
Training Set Test set 

Precision Recall Accuracy Precision Recall Accuracy 

DT Classifier 0.83 0.81 0.81 0.43 0.48 0.48 

Support Vector Classifier 0.62 0.66 0.66 0.38 0.45 0.45 

XGBoost Classifier 1.0 1.0 1.0 0.58 0.59 0.59 

RF Classifier 0.95 0.94 0.94 0.54 0.54 0.55 

SMOTE-RF Classifier 0.93 0.93 0.93 0.75 0.73 0.73 

(b) (a) 
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5. Conclusion 
     This study demonstrates the effectiveness of integrating Geographic Information Systems (GIS) and Machine Learning 

(ML) techniques to assess seismic-induced damage in above-ground liquid storage tanks. A real-world dataset was employed, 

comprising ground motion characteristics, tank dimensions, and actual damage classifications documented in post-

earthquake field reports. The damage states of the selected tanks were standardized using the HAZUS classification system 
for storage tank damage. A GIS-based spatial analysis was conducted to identify clustering and distribution patterns of 

earthquake-induced damage across California. The resulting spatial distribution map indicates that the most significant 

damage clusters are concentrated in Southern California, likely due to the region's high seismic vulnerability. Four ML 
classifiers, Decision Tree (DT), Random Forest (RF), XGBoost, and Support Vector Machine (SVM), were implemented to 

predict damage categories. Among these ML models, the Random Forest classifier, when paired with the Synthetic Minority 

Over-sampling Technique (SMOTE), showed the most promise in handling imbalance dataset and improving prediction 

accuracy. This combination yielding training scores of 0.93 across all evaluation metrics and test set metrics of Precision = 
0.75, Recall = 0.73, and Accuracy = 0.73. These results indicate that integrating SMOTE with the Random Forest classifier 

effectively enhances model generalization and mitigates the adverse effects of class imbalance. Overall, this research 

underscores the value of applying advanced analytical techniques for infrastructure safety assessment and contributes to 
ongoing efforts in disaster risk reduction. Future research may investigate the integration of additional spatial and structural 

data, temporal modeling of seismic activity, and validation across diverse infrastructure systems and geographic areas. 
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