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Abstract - This paper investigates the practical implementation of models in the energy management of buildings for complex user 

behavior and the use of multiple heating technologies, focusing on the development of an accurate yet efficient model. The study is 

exemplified by the new Institute for Hydrogen and Energy Technology building at Hof University of Applied Sciences, designed as a 

research platform for innovative energy solutions. We address the integration of shading strategies and the subsequent model order 

reduction necessary for effective Model Predictive Control application. The research involves creating a simplified resistance-capacitance 

model of the building's thermal zones, including its heating systems and a dual façade with solar thermal collectors. This simplified 

model, generated using the BRCM Toolbox and validated against a detailed EnergyPlus model, accounts for dynamic discrepancies, 

particularly during periods of high solar radiation. Optimization techniques are applied to the simplified model across different seasons, 

revealing that season-specific optimizations are more effective for long-term simulations, while a combined optimization approach is 

suitable for short-term and year-round MPC applications. The results underscore the potential of advanced MPC strategies to enhance 

energy efficiency and sustainability in complex building systems with multiple renewable energy sources. 
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1. Introduction  
       Meeting the climate policy goals of reducing CO2 emissions and achieving the 1.5 °C target defined in the Paris Climate 

Agreement is crucial for mitigating climate change. The optimization of building climate control systems and regulation 

strategies, especially through the integration of renewable energy sources, is an essential part of these efforts, as highlighted 

by the International Renewable Energy Agency (IRENA) [1]. At Hof University of Applied Sciences, the new Institute for 

Hydrogen and Energy Technology (iwe) serves as a research platform that embodies these principles, integrating a variety 

of renewable energy sources into a holistic building concept [2]. This innovative building project includes lecture halls, 

offices, and various laboratories related to energy systems and water. This multifunctional facility supports both academic 

activities and experimental research. It is equipped with solar panels on the façade and roof, which provide passive solar 

shading - increasing solar radiation in winter and improving solar protection in summer – while also serving as a platform 

for further sustainable energy solutions. The building's energy system includes photovoltaic modules, a central 150 m³ 

thermal stratified storage tank, micro combined heat and power units, heat pumps with ice storage systems and air absorbers. 

Inside, the laboratories will be equipped with test set-ups, including smaller heat pumps and burner test stands. The building's 

climate control strategy combines conventional HVAC systems (mainly for heating) with underfloor heating in the offices, 

additional radiators in the laboratories and ceiling panels in the technical areas. The aim of this work is to develop a 

comprehensive building model that enables efficient control, particularly in the context of Model Predictive Control (MPC). 

Accurate modeling is crucial, especially for capturing seasonal variations and periods of increased solar radiation in 

conjunction with heating demands. The approach uses a simplified resistance-capacitance (RC) model created with the 

Building Resistance-Capacitance Modeling (BRCM) Toolbox [3] and is validated against a detailed EnergyPlus [4] 

simulation model. This RC model facilitates dynamic simulations and subsequent optimization for year-round control. 

This study builds on important previous work. Drgoňa et al. emphasize the comprehensive understanding required for 

effective MPC implementation [5]. Li et al. provide an in-depth investigation of RC models in building simulation, focusing 

on gray-box modeling [6]. Various simulation environments, such as FastBuildings (Modelica) [7], RC_BuildingSimulator 

(Python) [8] and BRCM in Matlab®/Simulink [3] provide tools for this purpose. In particular, the BRCM Toolbox supports 
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the automatic generation of RC models, which are essential for accurate and efficient building simulations. Researchers 

from Cornell University published several studies [9-14] where the BRCM Toolbox was used to develop the underlying 

state space model. However, during periods of high solar radiation, the model cannot fully capture the thermal behavior 

accurately [3, 15]. Hatanaka et al. successfully optimized the model using the data generated by EnergyPlus for the 

thermal behavior in summer [15]. Building on these results, this paper aims to further explore different time periods, 

shading, and multiple heating methods within such an optimization framework. However, a complete survey of the vast 

literature is beyond the scope of this paper. 

This article is structured as follows: First, the development of a detailed building model in EnergyPlus is described. 
Next, the reduction of this model is presented with the help of the BRCM Toolbox and a merging of related zones. A 

new optimization strategy for high solar radiation values should ensure the accuracy of the model throughout the year. 

The Results section compares the performance of the simplified and optimized models with that of the comprehensive 

EnergyPlus model and evaluates its suitability for MPC applications. The paper concludes with a summary of the main 

results and an outlook on future research directions in the field of MPC. 

 

2. Methods 
This section outlines the methodology for generating a bilinear model from a detailed Energy Plus simulation model 

using the BRCM Toolbox [3] and its optimization for conditions with elevated solar irradiance based on the approach 

outlined by Hatanaka et al. [15].  

 
2.1. Building models 

To create a comprehensive foundation for analysis and optimization, a detailed building model with 62 thermal 

zones was developed with SketchUp as graphical editor using architectural drawings of the institute's building. This 

EnergyPlus model incorporates the various heating systems, enabling realistic simulations of building operations. The 

model considered standardized heating schedules and used 2010 reference data [16] for external conditions like solar 

radiation and ambient temperature. The normal vector of the north façade of the building is oriented 10° east of true 

north (see Fig. 1 left). 

  
Fig. 1: Left: South-east view of the 62 zone EnergyPlus model incl. collectors, right: 19 zone model incl. thermal zone 8. 

 

For efficiency reasons, this detailed model was reduced to a 19 zone model by merging zones with similar thermal 

characteristics, such as offices or laboratories on the same floor and façade. This consolidation aimed to maintain thermal 

accuracy while simplifying the simulation and was motivated by existing literature, ensuring fidelity to real-world 

building dynamics [17-20]. The different heating systems in the simplified model were adopted from those in the detailed 

EnergyPlus model to ensure consistency. This model was subsequently used for the application and optimization within 

the BRCM Toolbox. Comparisons with the detailed model, using weighted average temperatures based on room volume, 

validated the simplified model's accuracy. Thermal zone 8, which has the largest window-to-exterior wall ratio, is 

positioned on the south façade and is equipped with a ventilation unit and conventional radiators, was selected for further 

validation of various optimizations and simulations (see Fig. 1 right). 
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2.2 BRCM Toolbox and optimization/remodeling 

The BRCM Toolbox is designed to create efficient and accurate building models for MPC applications. Initially, a 

linear thermal model is generated using the building's construction and geometry data, capturing the fundamental thermal 

dynamics and heat transfer properties of the building. In the second module, External Heat Flux (EHF) models are added, 

parameterized with additional data specific to the building's systems, such as air handling units (AHU), radiators, and 

underfloor heating, as well as further construction and geometry details.  

In the linear model representation, the system dynamics are described using several key matrices, see first three terms 

of rhs. of Eq. (1). The matrix A represents the internal thermal dynamics of the building, capturing heat capacities of and 

heat fluxes through building elements. The matrix Bu characterizes the influence of control inputs on the system, such as 

heating power and blinds position, determining how these actions affect the temperature states. These different input 

variables are summarized in the vector u and contain the transient sequences determined by EnergyPlus for the simulation 

and comparison of the different models later. The matrix Bv represents the impact of external disturbances like solar radiation 

and ambient temperature on the system. The transient sequence of these values is combined in the vector v. 

A crucial aspect of the combined model is the inclusion of bilinear terms in Eq. (1), representing the interactions between 

temperatures (states x), control inputs (u), and external disturbances (v). These bilinear terms are essential for modeling 

complex thermal behaviors. The matrix Bvu captures the interaction between external disturbances and control inputs, e.g. 

modeling how solar irradiation combined with the position of blinds affects heat fluxes. The matrix Bxu describes the 

interaction between the system states (temperatures) and control inputs, e.g. capturing how the current temperature within 

building zones influences the effectiveness of heating actions. 

The final step in the modeling process is the discretization of the combined model, transforming the continuous equations 

into a suitable form for numerical optimization with specified fixed time steps, in this case with one-hour steps. This approach 

ensures that the model can predict the building's thermal behavior accurately and efficiently under various conditions, making 

it robust and applicable in practical scenarios [3]. 

 

𝐱k+1 = 𝐀 𝐱k + 𝐁u 𝐮k + 𝐁v 𝐯k +  ∑ (𝐁vu,i 𝐯k + 𝐁xu,i 𝐱k) 𝐮k,i
𝐧𝐮
𝐢=𝟏                                          (1) 

 

However, it became clear that the model had difficulties in accurately simulating and representing summer scenarios 

with periods of increased level of solar irradiation. This limitation has also been noted by other sources [3, 15] and justifies 

optimization using the methodology proposed by Hatanaka et al. [15]. This detailed optimization process will be examined 

more closely in the next section, outlining the specific steps taken to address this issue and enhance the model's performance 

under varying solar radiation conditions. 

The comparison between the simplified 19 zone toolbox model and the detailed EnergyPlus model also highlighted 

disparities, particularly during sunny periods. To address this, focused optimization efforts aimed to enhance the model's 

performance. The primary objective was to improve the accuracy of heat flow representation, especially through windows, 

crucial for capturing solar influences, reflected in the Bvu matrix. By refining this matrix and optimizing the model's response 

to external factors, the aim was to enhance predictive accuracy. This optimization process was pivotal for aligning the 

simplified model's behavior with the comprehensive EnergyPlus model, thereby enhancing its overall fidelity in representing 

the building's thermal dynamics, including shading effects of the dual façade. 

The optimization process focused on utilizing a nonlinear least-squares solver (lsqnonlin of Matlab®) [21, 22], to refine 

the Bvu matrix in the bilinear part of the model. In order to ensure physically sensible solutions, constraints in lsqnonlin were 

defined in such a way that the alternations in relation to the original entries were strongly limited. It is important to note that 

only the entries corresponding to the intensities of solar irradiation were subjected to optimization in the Bvu matrix. The 

effectiveness of the optimized Bvu matrix was assessed under diverse criteria, optimization durations, levels of solar 

irradiance and passive shading by the dual façade. By systematically evaluating the performance of the models in winter, 

spring and summer, insights were gained into the robustness and adaptability of the optimized matrix. These evaluations 

helped to capture the details of the thermal dynamics within the modeled environment. Alongside a comparison of the 

EnergyPlus data based on the weighted 62 zones with the initial toolbox model and three optimizations were carried out 

below.  
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The first optimization variant, referred to below as summer optimization, follows the method of Hatanaka et al. [15] 

and focuses on the first week of July. In this optimization the Bvu matrix is adapted so that high solar irradiance and 

passive shading effects typical of summer are more accurately taken into account and a more accurate simulation of 

thermal conditions under peak solar loads is ensured. The second variant, winter optimization, addresses the thermal 

behavior during the first week of January. In this approach the Bvu matrix is adjusted to accurately represent thermal 

dynamics under typical winter conditions, which are characterized by lower solar irradiance and increased heating 

demands. The third variant is the combined (January-July) optimization. This method uses a continuous dataset that 

includes the first two weeks of January followed by the first two weeks of July. The purpose is to determine a Bvu matrix 

that can accurately adjust to thermal dynamics in both winter and summer, providing a holistic model that considers the 

seasonal influences of dual façade shading and partial heating. The performance of the different models was assessed 

outside these optimization periods, starting in the third week of January, March and July. This approach validates 

whether each optimized model can robustly handle the thermal dynamics throughout the year. 

  

3. Results 
For a representative analysis, the thermal zone 8 from the 19 zone toolbox model was selected as already described 

in the building models’ section. Specifically, it is expected to exhibit the behavior highlighted by Hatanaka et al. [15] 

and Sturzenegger et al. [3], wherein the toolbox-generated model tends to noticeable deviations when simulating the 

dynamics of building temperatures during summer months with higher solar irradiation. To demonstrate this also for the 

models used here, initially, however, a comparison is drawn between the results obtained from the elaborated EnergyPlus 

model with 62 zones and the initial model generated by the BRCM Toolbox with 19 zones, focusing on winter, spring, 

and summer months. The corresponding outdoor temperatures and solar irradiation, exemplified on the south façade, 

are shown in Fig. 2. The room temperatures for the adjacent walls were used to define the temperature data that cannot 

be determined from EnergyPlus, such as the individual wall layers, which must also be specified in the vector x as initial 

condition for the simulation. Subsequently, a detailed examination of different optimization methods is conducted, 

evaluating their suitability for simulating the building with associated thermal zones. 

 
Fig. 2: Solar irradiation on south façade (dotted) and outside temperature (solid). 

 

We start with discussing the performance of the initial toolbox model with reference to Fig. 3. In the first week of 

the winter observation period, accurate results are obtained. However, by the end of the second week, obviously 

discrepancies emerge. The high window-to-wall ratio combined with low sun angle in winter, resulting in minimal 

shading, leads to significant deviations from the EnergyPlus data after a few days. This issue persists throughout the 

entire observation period due to constantly high irradiation levels. In the spring period, the model exhibits even more 

significant deviations. These discrepancies can be partially attributed to the initial conditions, where wall temperatures 

were set to room temperature for all layers, and to the high solar radiation (see Fig. 2). The negative trend continues, 

with the deviations remaining large or even increasing. In the first two days of the summer season, the model performs 

comparatively well due to low irradiation levels. However, as soon as the irradiation increases after a few days, 
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significant deviations in the model's accuracy become apparent. Other thermal zones with smaller window areas exhibited 

smaller differences, highlighting the sensitivity of thermal zone 8 to solar gains. These deviations underscore the need for 

optimization, particularly for periods with higher solar radiation. 

 

   
Fig. 3: Evaluation of the room temperature for the Initial Toolbox Model (solid), EnergyPlus (dotted). 

 

   
Fig. 4: Evaluation of the room temperature for the summer-optimized model (solid), EnergyPlus (dotted). 

 

The first optimization, which follows the methodology of Hatanaka et al. [15], focuses on the summer period, in specific 

the first week of July (see Fig. 4). The objective of this optimization was to adapt the Bvu matrix to take into account the 

increased solar irradiance and passive shading effects without active heating. The summer-optimized model shows good 

agreement with the EnergyPlus model during summer and spring. However, significant discrepancies are observed in winter, 

as the model failed to maintain minimum room temperatures even with integrated heating systems, indicating its limitations 

for year-round simulations. The model performs well during a temporary heating period in the fourth week of spring, 

accurately representing heating loads in combination with low solar irradiation. However, the quality of the model results 

decreases over longer simulation periods, such as winter, leading to significant deviations during prolonged heating periods. 

The second optimization focuses on the winter period, in particular the first week of January (see Fig. 5). This 

optimization attempts to modify the Bvu matrix to more accurately capture the thermal dynamics typical of winter, including 

heating operations and reduced shading due to the lower sun angle combined with the dual façade concept. This model 

performs well in January and February, but discrepancies occur again in March as soon as solar irradiation level increases. 

Significant deviations are also observed in summer, indicating the model's unsuitability for year-round simulations. These 

issues were particularly evident during the transition from week 2 to 3 in spring correlating with a short period of higher 

solar irradiation. 

 

15

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10 11

ro
o

m
 t

e
m

p
e

ra
tu

re
 (

°C
)

time (week)

Winter

1 2 3 4 5 6 7 8 9 10 11
time (week)

Spring

1 2 3 4 5 6 7 8 9 10 11
time (week)

Summer

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11

ro
o

m
 t

e
m

p
e

ra
tu

re
 (

°C
)

time (week)

Winter

1 2 3 4 5 6 7 8 9 10 11
time (week)

Spring

1 2 3 4 5 6 7 8 9 10 11
time (week)

Summer



 

 

 

 

 

115-6 

   
Fig. 5: Evaluation of the room temperature for the winter-optimized model (solid), EnergyPlus (dotted). 

 

   
Fig. 6: Evaluation of the room temperature for the combined January/July-optimized model (solid), EnergyPlus (dotted). 

 

The third optimization approach combining data from the first two weeks of January and the first two weeks of July 

aimed to create a more versatile Bvu matrix capable of managing thermal dynamics across both winter and summer 

periods, including heating activities and varying solar angles, taking into account the dual façade concept. During the 

winter simulation, this optimization was capable of maintaining room temperature in heating periods over a longer 

duration, resulting in minor deviations from the EnergyPlus model. This outperforms all other scenarios, including the 

purely winter-optimized model, from January to May. In the first spring week, this combined optimization also 

performed well compared to other optimizations. Although it did not match the quality of the summer optimization 

results, it better maintained room temperature over a longer period than the winter optimization and the initial model. 

This improvement is likely due to better incorporation of solar altitude and the increased passive shading effects of the 

dual façade concept in later periods. Future optimizations might benefit from including periods with medium solar 

elevations, such as in spring or autumn. In the summer simulation, good values were achieved within one week. 

However, values began to diverge again afterward. 

As the previous assessment focused on only one of the 19 thermal zones, an analogous assessment was also carried 

out for each of the remaining 18 zones. Across all seasons, the combined optimized model showed the best performance 

for short durations. For longer dynamic simulations, it is recommended to use models optimized specifically for each 

time period. Therefore, selecting between summer and winter optimizations is sufficient for model selection. The 

optimization data, based on the EnergyPlus model, include the integrated shading concept of the dual façade, which 

affects the building's thermal balance across different seasons and solar elevations. Moreover, the optimized model 

accounts for internal factors and various HVAC systems such as the AHUs, radiators, and underfloor heating, 

particularly during winter months. For the main focus on MPC, the combined optimized model consistently delivers 
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good results across all relevant thermal zones, especially for shorter periods (less than two weeks), making it suitable for 

implementation within a MPC framework. 

 

4. Conclusion 
The primary focus of this investigation was the practical modeling of a building and its thermal zones, including multiple 

heating technologies and shading using a dual façade concept. The focus was on the ability to accurately map the dynamic 

behavior, particularly for the future implementation of a predictive building control system. A detailed EnergyPlus model 

served initially as a reference and data basis, which was then converted into a reduced model by simplification of the building 

and room properties of individual zones using the BRCM Toolbox. Deviations from the reference model, particularly in the 

summer months with higher solar irradiation, were adjusted using various optimization strategies over different time frames. 

The optimizations were carried out for the summer and winter periods, and also combined for January and July. It has been 

shown that for longer-term simulations of the building, it is advisable to use models that are optimized for the respective 

time period or season, as they are capable of providing good-quality results over a longer period. The combined optimization 

for summer and winter periods provided favorable outcomes for different seasons and external conditions within short time 

frames, making it still suitable for further use within MPC for the building. 

In terms of model accuracy, future optimizations can be made to further refine the models. This could include extending 

optimization periods for seasonal models and expanding the dataset for the development or refinement of combined-season 

models. Furthermore, incorporating additional state variables, such as the external temperatures of the façade layers, into the 

optimization process beyond the use of only thermal zone values from EnergyPlus could provide even more precise insights 

into the shading effects of the dual façade concept on internal temperatures, even if at the expense of optimization time. The 

research focus should now shift towards the implementation of MPC utilizing Singular Value Decomposition methods to 

streamline the complexity of the current model. This will enable more efficient and effective control strategies to be 

implemented. Future efforts will also include a rigorous validation of the presented models with real data from the institute 

and its complex thermal zones after completion. This validation aims to ensure the practicality and reliability of such models 

in real-world scenarios, improving their applicability and effectiveness in optimizing the building energy management.  
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