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Abstract -  An exact theoretical analysis was presented for the virtual mass of the Taylor bubble. The present theoretical results were 

validated experimentally and proved the earlier results of Kendoush [1] were grossly approximate. An experiment was designed, 

installed, and tested for the purpose of obtaining the virtual mass by using a 3-D manufactured polymeric Taylor bubble.  
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1. Introduction 
Unsteady motion of bubbles arise in many engineering applications, ranging from boiling to adiabatic two-phase flow 

in pipes. Slug flow that contains Taylor bubbles is considered as one of the two-phase flow regimes flowing in pipelines. 

 When the velocity of Taylor bubble is changing under accelerating flow, a force called the virtual mass (or added 

mass) force is generated [2]. This force arises from the acceleration of the mass of the liquid that surrounds the Taylor 

bubble.  Bubble shape affects the value of the virtual mass coefficient 𝐶𝑚, for example, a spherical bubble has  𝐶𝑚= 0.5 

[3]. A formulated form of  𝐶𝑚was obtained for the spherical-cap bubble [4 & 5] and the oblate-ellipsoidal bubble [6]. 

It is always advisable to verify the theoretical results. Kendoush et al. [7] did so for the  𝐶𝑚 of two solid spheres 

accelerating in fluids and found good agreement with the theories of other investigators. An excellent review on the subject 

was presented by Michaelides [8]. Hanau and Raithby [9] derived equations for the virtual mass and drag coefficients of a 

Taylor bubble moving in a horizontal pipe and found that the  𝐶𝑚was a function of bubble geometry.  

Takhistov et al. [10] performed experiments on the flow of Taylor air bubbles in KCl/H2SO4 solutions in a capillary 

tube of 0.25 mm radius under the influence of an electric field. They measured the time dependent bubble velocity and 

found it to be a function of bubble length in contrast to the steady state velocity which is a function of pipe radius.    

 The aim of the present work is to verify experimentally, the theoretical results of the  Cm  obtained here for the Taylor 

bubble. 

  

2. Theoretical Analysis 
2.1. The virtual mass force on the Taylor bubble 
2.1.1 The bubble nose region 

The velocity potential of a Taylor bubble rising with velocity U in a circular pipe of radius R is given by Clanet et al. 

[11] in cylindrical (y, r) coordinates (Fig. 1) as follows  

 

 

∅ = yU + AoekyJ0(kr)                                   (1) 

 

Where J0 is the Bessel function of order zero. The first term of this equation represents the  
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Fig. 1: Schematic diagram of the Taylor bubble. 

 

uniform flow. Clanet et al. [11] assumed that the velocity far ahead of the bubble is equal to the bubble velocity. 

The two constants Ao and k are given as follows 

                             𝐴𝑜 = −
𝑈

𝑘
                  and          𝑘 =

3.83

𝑅
              (2) 

 

The associated stream function is 

                               𝜓 =
𝑟𝑈

𝑘
(𝑒𝑘𝑦𝐽1(𝑘𝑟) −

1

2
𝑘𝑟)                                                                   (3) 

 

 

Fig. 2: Partitions of the various flow regions around the Taylor bubble. 
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where J1 is the Bessel function of order one. The domain of the forward region of the Taylor bubble is bounded as 

−Lf < y < Lg, where  Lf is the length of the liquid region and  Lg is the length of the slug bubble as shown in Fig. 2.   

 

                    Removing the uniform flow vector yU from Eq. (1) makes the Taylor bubble rise with velocity U in a 

mass of still liquid, hence we get 

 

                              ∅ = − (
𝑈

𝑘
) 𝑒𝑘𝑦𝐽0(𝑘𝑟)                    (4) 

The velocity components of the bubble are given as follows 

 

 𝑉𝑟 = −
𝜕∅

𝜕𝑟
               and         𝑉𝑦 = −

𝜕∅

𝜕𝑦
                                   (5)       

Since 
dJ0(r)

dr
= −J1(r), the above equations become 

𝑉𝑟 = −𝑈𝑒𝑘𝑦𝐽1(𝑘𝑟)                                (6) 

and 

  𝑉𝑦 = −𝑈𝑒𝑘𝑦𝐽0(𝑘𝑟)                                       (7) 

 

The forward region of the bubble may be divided into the following two subregions, namely; a region near the bubble 

nose (shown dotted in Fig. 2), and the thin layer liquid region between the pipe wall and bubble cylindrical surface. These 

features appear to be common to the physical phenomena that are classed as a slug flow regime. 

The length of the Taylor bubble is divided into two parts, a small part containing the rounded bubble nose and the 

remaining large cylindrical length of the bubble (bounded by cross-hatching in Fig. 2). Here  m = 1.34RCa2/3,  is the 

thickness of the thin liquid layer between the pipe wall and the cylindrical surface of the bubble as derived by Bretherton 

[12]. Here Ca represents the capillary number (Ca = μU σ⁄ ), where μ is the dynamic viscosity of the liquid and σ is the 

surface tension. The capillary number gives the ratio of the viscous force to the force of surface tension.  The kinetic 

energy of the liquid in this region is obtained as follows 

 

 𝑇𝑎 =
1

2
𝜌 ∫ ∫ (𝑉𝑟

2 + 𝑉𝑦
2)𝑑∀

𝑦=𝐻(𝑟)

ℎ𝑦=0

𝑟=𝑅

𝑟=0
                                                            (8) 

where d∀= 2πrdrdy. 

Here ρ  is the density of the liquid. The function H(r) in this equation is obtained as follows; the equation of the 

surface of the bubble can be obtained from the stream function Eq. (3) namely, 

 

 
𝑟𝑈

𝑘
(𝑒𝑘𝑦𝐽1(𝑘𝑟) −

1

2
𝑘𝑟)=0                                                                      (9) 

The solution of this equation for y gives y = H(r)  , as follows 

 

𝐻(𝑟) =
1

𝑘
[𝑙𝑛

1

2
𝑘𝑟 − 𝑙𝑛𝐽1(𝑘𝑟)]                                                     (10) 
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The elemental volume of the bubble is given as follows  d∀= 2πrdrdy . Substituting Eqs. (6) and (7)  into Eq. (8) 

and carrying out the integration, gives  

 

  𝑇𝑎 =
𝜋𝜌𝑈2

2𝑘
(∫ 0.25𝑘2𝑟3𝑑𝑟 −

𝑅

0
∫ 𝑟𝐽1

2(𝑘𝑟)𝑑𝑟
𝑅

0
+ ∫

0.25𝑘2𝑟3𝐽0
2(𝑘𝑟)

𝐽1
2(𝑘𝑟)

𝑑𝑟 −
𝑅

0
∫ 𝑟

𝑅

0
𝐽0

2(𝑘𝑟)𝑑𝑟)             (11)                                                                                                                                                          

Note that 

 ∫ 𝑟𝐽0
2(𝑘𝑟)𝑑𝑟 =

1

2
𝑟2[𝐽0

2(𝑘𝑟) + 𝐽1
2(𝑘𝑟)] + 𝐶1                      (12) 

and 

 ∫ 𝑟𝐽1
2(𝑘𝑟)𝑑𝑟 =

1

2
𝑟2[𝐽1

2(𝑘𝑟) − 𝐽0(𝑘𝑟)𝐽2(𝑘𝑟)] + 𝐶2                        (13) 

 

where C1 and C2 are constants. There is no analytical solution for the third integral from the left side of Eq. (11), 

therefore, it was numerically integrated after introducing the non-dimensional parameter  η = r R⁄  as follows 

 

 
(3.83𝑅)2

4
∫ 𝜂3 𝐽0

2(3.83𝜂)

𝐽1
2(3.83𝜂)

𝑑𝜂 = 554.724𝑅21

0
                                                   (14) 

Substituting this equation into Eq. (11) and integrating, we get after lengthy algebra 

 

    𝑇𝑎 =
𝜋𝜌𝑈2

2𝑘
(0.25𝑘2 𝑅2

4
− 𝑅2𝐽1

2(𝑘𝑅) +
𝑅2

2
𝐽0(𝑘𝑅)𝐽2(𝑘𝑅) + 554.724𝑅2 −

𝑅2

2
𝐽0

2(𝑘𝑅))             (15) 

Substituting the values of Bessel functions) and rearranging, we get 

 

 𝑇𝑎 = 72.496𝜋𝜌𝑈2𝑅3                                                                     (16) 

2.1.2 The thin liquid layer region 

 The thin liquid layer region is shown cross hatched in Fig. 2. The kinetic energy of the liquid in this region is 

very small in comparison with the bubble nose region due to the smaller mass of the liquid there.  This means that the 

contribution from this region to the virtual mass coefficient is minimum. Bubble mass flow up equals displaced water 

mass flow down. Measured bubble velocity in 40 mm tube averaged 0.212 m/s up. Bubble bottom cross sectional area 

is 18.86 times the thin film cross-sectional area. Thin film velocity: 18.86(0.212 m/s) = 4.0 m/s down. 

 
2.1.3 The wake region of the Taylor bubble 

The liquid flow in the wake region of the Taylor bubble may be assumed inviscid, vortical and confined to the 
spherical Hill vortex as shown in Fig 3.  Parlange [13], Kendoush [14] and Milne-Thomson [3] utilized  
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Fig. 3: A spherical Hill vortex at the wake of the Taylor bubble. 

 

a similar model to obtain information about parameters of the wake of a spherical – cap bubble. Nakoryakov et al. [15] 

observed toroidal vortex in the wake of the Taylor bubble.  Apply the polar (r, θ)  coordinates in the wake region Lf of Fig. 

2. The following velocity field was used 

 

   𝑉𝑟𝑤 =
3

2
𝑈𝑤 (

𝑟

𝑅
)

2

𝑐𝑜𝑠𝜃                                                                              (17) 

and 

 𝑉𝜃𝑤 = 3𝑈𝑤 (
𝑟

𝑅
)

2

𝑠𝑖𝑛𝜃                                                                             (18) 

where Uw is the main liquid velocity in the wake. 

 

The kinetic energy of the liquid of the wake is given as follows 

   

  𝑇𝑏 =
1

2
𝜌 ∫ ∫ (𝑉𝑟𝑤

2 + 𝑉𝜃𝑤
2 )

𝜋

𝜋/2

𝑅

0
2𝜋𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃                                                   (19) 

      

Substituting Eqs. (17) and (18) into this equation  gives  

 

  𝑇𝑏 = 9𝜋𝜌𝑈𝑤
2 ∫ ∫ (

1

4
(

𝑟

𝑅
)

4

𝑐𝑜𝑠𝜃2 + (
𝑟

𝑅
)

4

𝑠𝑖𝑛𝜃2)
𝜋

𝜋/2

𝑅

0
𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃                               (20) 

 

The evaluation of this integral gives 

 

  𝑇𝑏 =
27

28
𝜋𝜌𝑈𝑤

2 𝑅3                                                                           (21) 

 

The relationship between the liquid wake velocity and the main liquid or bubble velocity is recommended by 

Garimella et al. [16] as follows 
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                𝑈 = 1.2𝑈𝑤                                                                                 (22) 

When this equation is substituted in Eq. (21), we got the following 

  

  𝑇𝑏 = 0.6696𝜋𝜌𝑈2𝑅3                                                                     (23) 

 

The wake region is not a fully liquid region, some small spherical bubbles may exist there, but we shall assume it 

a fully liquid region. The total kinetic energy imparted to the liquid due to the motion of the Taylor bubble would be 

the sum of the kinetic energy of the liquid at the forward region plus that at the wake region of the bubble, which is 

 

  𝑇 = 𝑇𝑎 + 𝑇𝑏                                                                               (24) 

 

  Substituting Eqs. (16) and (23) into this Equation,  gives   
 

  𝑇 = 72.496𝜋𝜌𝑈2𝑅3 + 0.6696𝜋𝜌𝑈2𝑅3                                                     (25) 

This kinetic energy may also be given by the following 

 𝑇 =
1

2
𝑀𝑈2                                                                         (26) 

where M is the mass of liquid displaced by the bubble. We get the following from Eqs. (25) and (26) 

 𝑀 = 146.3292𝜋𝜌𝑅3                                                                (27)               

The virtual mass coefficient is defined by the following 

 𝐶𝑚 =
The volume of the "virtual mass"

volume displaced by bubble
                                 (28) 

The volume displaced by the bubble is defined for the Taylor bubble of Fig. 1 as follows (a detailed derivation is 

given in Appendix A) 

∀= 𝜋𝑅3𝑓2(𝐶𝑎) [
𝐿𝑔

𝑅
−

1

3
𝑓(𝐶𝑎)]                                                            (29) 

Here  f(Ca) is given by Appendix A. Accordingly, Cm becomes equal to the following 

          𝐶𝑚 =
146.3292

(𝑓(𝐶𝑎))
2

[
𝐿𝑔

𝑅
−

1

3
𝑓(𝐶𝑎)]

                                                                    (30) 

         This equation indicates that the virtual mass coefficient is a function of the geometry of the Taylor bubble, 

and the capillary number of the flow. Figure 4 shows the variation of the virtual mass coefficient with the capillary 

number at constant values of  
Lg

R
.  No significant change in the function is seen for Ca < 0.001. Figure 5 shows the 

variation of the virtual mass coefficient with the geometrical ratio of the Taylor bubble at constant values of the 

capillary number. 

 



 

 

 

 

 

 

 

ICFFTS 122-7 

 

Fig. 4:  The variation of the virtual mass coefficient of a Taylor bubble with the capillary number at  Lg R = 5⁄  . 

 

 

Fig. 5: The variation of the virtual mass coefficient with the geometrical ratio of the Taylor bubble and the capillary number, 

 (  __ ) Ca = 0.1, (_  _  _ ) Ca = 0.01, (. . . .) a = 0.001 . 

 

 

The distribution of the various flow regimes around Taylor bubble has important effects on the virtual mass 

coefficient. The higher contribution (99.1%) comes, from the liquid motion at the bubble nose, and the lower contribution 

(0.9%) comes from the effect of the wake region. This is mainly due to the low vortical velocity of the liquid there (see Eq. 

(22)). 

The dependence of Cm in Eq. (30) on bubble geometry is in agreement with Hanau and Raithby [9] mentioned earlier. 
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3. Experimental Simulation of the Taylor Bubble 
The experimental apparatus shown in Fig.6 simulates the Taylor bubble by using an ABS polymer model. The 

model was designed and fabricated on a 3D printer (StrataSys Dimension SST 1200). We have chosen two different 

sizes matching the Taylor bubble based on our earlier experiments on air Taylor bubble (aTb) [18].  

The experiments were conducted in a transparent Plexiglas column of 1.219 m height and a square cross-section 

of 15 cm to reduce the distortion due to optical refraction while capturing high-speed photographs of the travel of the 

plastic Taylor bubble (pTb) inside the cylindrical pipe centered in the square cross-sectional containment column. 

The fishing line connected to the pTb was run across two pulleys to a reel driven by the programmable VFD 

motor (Fig. 6). Pulley 1 is supported by a Newton scale to measure the force required to pull the pTb to the accuracy 

of ±0.25 N.  Note: The required force equals ½ the value shown on the Newton scale. 

 

 

Fig. 6: Schematic diagram of the experimental apparatus. VFD stands for Variable Frequency Drive.  

 

Our previous experimental results [18] and the results of Liao and Zhao [19] showed a gradual decrease of the 

liquid film thickness, so the shape of the Taylor bubble possesses sharpness of the bubble nose. The work of 

Lertnuwat [20] also appreciated this shape. 

Great care was taken to smooth the surface of the pTb in order to reduce the friction as much as possible. It should 

be noted that the pTb floats in water and this requires the addition of extra weights of metallic washers adhered to the 

base of the pTb to make it neutrally buoyant in water. 

A high-speed camera (Fastec Imaging) at 250 frames per second and 9 mega-pixel resolution, was employed to 

measure the force recorded on the Newton scale. This force reflects two times the tensile force required to lift the pTb. 
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4. Validation and Discussion 
        The general equation of motion is given as follows [22]  

 

𝑉𝑠(𝜌𝑠 + 𝐶𝑚𝜌𝑓)
𝑑𝑈

𝑑𝑡
= 𝐹 − 𝑉𝑠(𝜌𝑠 − 𝜌𝑓)𝑔 −

1

2
𝐶𝐷𝜋𝜌𝑓𝑅2𝑈2                                      (31) 

 
The history term was neglected in this equation as its contribution is extremely small [22]. Here F represents the force 

registered by the Newton scale (Fig. 6). This force is normally halved due to the use of the pulley. The second term on the 

right side of Eq. (31) represents buoyancy and the third term represents the drag force. 
       The drag coefficient 𝐶𝐷 of the Taylor bubble was obtained from [24] as follows 

𝐶𝐷 = 8.1657 
𝐿𝑔

𝑅
− 2.722                    for 𝐶𝑎 < 0.005                                         (32) 

This equation was compared with the experimental data of Kawaji et al. [25] and Tudose [26] who also used solid 

plastic models of the Taylor bubble and the ratio of their experimental drag to that given by the above equation was 1.8 

(Table 1). This ratio was used in Eq. (31) to get Cm = 40.4 for the 40 mm diameter pTb model as shown in Fig. 7 where 

the agreement between theory and experiment is remarkable.  

The present results showed how the experiment became the fair judge for the validity of the theory. The earlier 

theoretical results [1] has the approximation of expanding the velocity components of the fluid around the apex of the 

bubble (y=0) in Eqs. (6 and 7). This produced a grossly approximate value of Cm that did not agree with the present 

experimental results. Both the current and the previous [1] solutions share the dependence of  Cm on the Taylor bubble 

geometry (
Lg

R
). 

 
Table 1: Comparison with the experimental data of Tudose [26]. 

 

𝐿𝑔, cm 𝐿𝑔

𝑅
 

Calculated 𝐶𝐷 
Eq. (32) 

Experimental 𝐶𝐷 Calculated 𝐶𝑚 

7.5 5.86 36.33 66.7 (Fig. 5.2.5) 28.033 (Eq. 30) 

15 11.72 77.8 137 (Fig. A.1.4) 13.536 (Eq. 30) 

9.5 4.750 36.07 36.68 32.452 (Eq. 31) 

 6.1 2.461 16.81 16.69 191.182 (Eq. 31) 
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Fig. 7: Comparison between the current theory (Eq. (30)) solid line with Ca = 0.003, Eq. (30) blue circular points, and Eq. (31) 

red star points. 

 
5. Conclusions 

New theoretical analyses were performed and produced a solution for the virtual mass coefficient of the Taylor 

bubble. The new solution proved to be superior to that obtained earlier [1] when comparing both solutions to the 

present experimental results. 

 Modern 3D printer was used to manufacture a solid shape similar to the Taylor bubble. An experimental system 

was designed, installed, and tested to accelerate the solid model of Taylor bubble to register its velocity and force by 

using a high-speed camera and a precise Newton scale. 
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APPENDIX A: DERIVATION OF EQ.  (37) 
 
 The volume of liquid displaced by the Taylor bubble of Fig. 1 

 Note that the thickness of the thin liquid layer is given by the following equation of  Bretherton [12] 

  m = 1.34RCa2/3                                                                                                           (A1) 

The volume of liquid displaced by the Taylor bubble is given as a cylinder and a hemisphere as follows 

  ∀= π(R − m)2[Lg − (R − m)] +
2π

3
(R − m)3                                                          (A2) 

Here, the bubble nose was assumed spherical as was considered by Dumitrescu [17]. Substituting Eq. (A1) into Eq. (A2), 

gives the following after some lengthy algebra 

  ∀= πR3f 2(Ca) [
Lg

R
−

1

3
f(Ca)]                                                                                        (A3) 

where 

                         f(Ca) = 1 − 1.34Ca2/3  
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