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Abstract - This paper presents a combination of a free-surface flow problem solution using Smoothed Particle Hydrodynamics (SPH) 

with an analysis of the results by Finite-Time Lyapunov Exponents method (FTLE). Both these methods originate from the Lagrangian 

de-scription and work with continuum particles, which makes their combination relatively straightforward. FTLE is a method used 

primarily for the identification of coherent structures, for example, vortices. However, this work focuses mainly on how FTLE can de-

scribe the evolution of free surfaces; their emerging and vanishing. There are two variants of FTLE: forward-in-time and backward-in-

time. Both variants give different information about the flow and by their combination, we can get an interesting picture revealing some 

hidden characteristics that are not apparent at first sight. 
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1. Introduction 
Various structures in fluid flow fields, such as vortices and eddies, are in the scope of researchers for many decades. 

Their analysis using primary quantities, such as velocity, cannot provide us a full understanding of these phenomena. Some 

methods for their identification and quantification have been proposed, Q-criterion [1], Δ-criterion [2], or λ2-criterion [3], to 

name just the most widely used. The named methods work with the velocity field. This is convenient because velocity fields 

are naturally widespread outputs of practically all numerical or experimental methods in fluid dynamics. 

However, this approach is not the only one possible. Another possibility is to use a material description and analyse the 

trajectories of continuum particles. In this context, we talk about so-called Lagrangian Coherent Structures (LCSs). Simply 

put, LCSs are surfaces in the flow field that are impenetrable by materials. The fluid bounded by these structures share either 

the same origin or fate. A strong argument for Lagrangian approach is that methods based on velocity gradient field are not 

objective, meaning they give different results in different coordinate systems [4]. Lagrangian methods also offer a deeper 

understanding of a flow. 

One way to identify LCSs is Finite-Time Lyapunov Exponents (FTLE) method. It has been shown that ridges formed 

by mutually repulsing or attracting particles are LCSs and the method was applied to experimental and numerical data [5]. 

However, particle trajectories usually have to be extracted from the velocity field first, and FTLE evaluation follows. It is 

computationally expensive [6]. Thus, it seems reasonable to use FTLE with a method that works with particles directly like 

SPH. 

Sun et al. developed two algorithms for the evaluation of FTLE within SPH framework: through particle position and 

through time integration [7]. The algorithms were also implemented on GPUs for fast computations [8]. 

This paper focuses on the implementation of a previously published method of FTLE working with data from SPH. The 

used variant of SPH method is briefly described. FTLE is described in greater detail. Then the method was used on a simple 

free-surface problem and the results are analysed and discussed. In contrast to usually analysed problems like vortex shedding 

or turbulence is the current field aperiodic, and it is also solved as inviscid (there is only artificial numerical viscosity). It 

appears that not only vortices might be identified but the analysis can give us a better insight into phenomena like mixing 

and free-surface evolution. Possible future steps in the work are discussed as well. 
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2. Methods 
2.1. Smoothed Particle Hydrodynamics 

Smoothed Particle Hydrodynamics (SPH) is a numerical method originating from the material description of continuum. 

It is especially suitable for the solution of free-surface flows and transient problems. Fluid is discretized in the form of 

particles of constant mass, and the motion of these particles is given by the governing equations 
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where indices 𝑖 and 𝑗 denote particles, 𝑊 is so-called smoothing function, and Π stands for the artificial viscosity term. Other 

symbols follow the usual notation: 𝑡 is time, 𝜌 is density, 𝑚 is mass, 𝐯 is velocity, and 𝐠 is gravity acceleration. 
The relation between density and pressure is given by the equation of state 

 

𝑝 = 𝑐2(𝜌 − 𝜌0) (3) 

 

where c is the numerical speed of sound and 𝜌0 is the fluid density at zero gauge pressure [9]. The numerical speed of sound 

is chosen according to the solved problem to keep the variation in liquid density under 1%. 

In this work, a truncated Gaussian smoothing function [9] was used and Monaghan’s artificial viscosity [10]. Wall 

boundary conditions are modelled as free-slip using virtual particles according to [11]. The author of this paper used a 

virtually identical solution method in his previous work [12], [13]. For more details about the method see, e.g., [9]. 

 
2.2. Finite-Time Lyapunov Exponents 

There are two variants of FTLE: forward-in-time (FTLE+) and backward-in-time (FTLE-). These identify mutually 

attracted and repulsed particles, respectively. Both are used in this work. The method that uses the particle positions proposed 

in [7] was employed. 

Let’s define a material point vector 𝐗 in its initial time 𝑡0. This material point changes its position to 𝐱 at the current 

time 𝑡. The current position is a function of the initial position and time, i.e., 𝐱 = 𝐱(𝐗, 𝑡).  We can define the deformation 

gradient tensor for the continuum motion between time instances 𝑡0 and 𝑡 

 

𝐅𝑡0

𝑡 (�⃗�) =
𝜕𝐱

𝜕𝐗
 (4) 

 

and then forward-in-time Right-Cauchy-Green strain tensor 

 

𝐂𝑡0

𝑡 (𝐗) = [𝐅𝑡0

𝑡 (𝐗)]
𝑇

𝐅𝑡0

𝑡 (𝐗) (5) 

 

Since this tensor is symmetric and positive definite, its eigenvalues are real and positive. Moreover, it can be shown that 

it is linked only to a stretching deformation of the continuum and not its rotation and the eigenvalues have the meaning of 

stretching in the directions of eigenvectors. Therefore, the maximum eigenvalue Λmax can be used as a measure of the 

stretching deformation. 

The forward-in-time Right-Cauchy-Green strain tensor from Eq. 5 can describe any deformation between two different 

configurations, not only from the initial to the current. From the kinematic point of view, there is also no difference between 

time marching forward and backward. We will use these properties when defining FTLE formulas. 
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To define FTLE+, let’s set another time instance 𝑡𝑓 which is in the future relative to the current time 𝑡. This variant can 

be written 

 

𝜆𝑡

𝑡𝑓(𝐱) =
1

|𝑡𝑓 − 𝑡|
ln √Λ𝑚𝑎𝑥 [C𝑡

𝑡𝑓(𝐱)] (6) 

 
FTLE- is defined 

 

𝜆𝑡
𝑡0(𝐱) =

1

|𝑡0 − 𝑡|
ln √Λ𝑚𝑎𝑥[C𝑡

𝑡0(𝐱)] . (7) 

 

Note that now 𝑡0 does not necessarily denote the initial configuration but any time instance before 𝑡. 

We need to evaluate the deformation gradient tensor 𝐅 defined by Eq. 4 in SPH framework. It can be done using the 

formula 

 

𝐅𝑡0
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𝜌𝑗
)

𝑡0𝑗

 (8) 

 

where 𝐋(𝐗𝑖) is the smoothing function consistency improving tensor and it is calculated 

 

𝐋(𝐗𝑖) = [∑(𝐗𝑗 − 𝐗𝑖) ⊗ ∇𝑊(|𝐗𝑗 − 𝐗𝑖|) (
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𝜌𝑗

)
𝑡0𝑗

]

−1

 (9) 

 

To get FTLE according to Eqs. 6 and 7, we change the arguments in Eqs. 8 and 9. For FTLE+, we evaluate the 

deformation gradient from 𝑡 to 𝑡𝑓 (𝐅𝑡

𝑡𝑓
), and for backward-in-time from 𝑡 to 𝑡0 (𝐅𝑡

𝑡0).  

FTLE- can be evaluated parallel to the solution because we know the particle positions in the past. Clearly, this is not 

possible for FTLE+ because the future configuration is not calculated yet. In this work, FTLE was computed and analysed in 

postprocessing using MATLAB. 

 

3. Problem Definition 
The method is demonstrated on a variation of a simple dam-break problem in two dimensions. There are two columns 

of liquid (one higher and one shorter) which start collapsing due to gravity. The resulting surges meet in the middle part of 

the tank, resulting in violent flow patterns. The initial configuration is depicted in Fig. 1. 

 

 
Fig. 1: Scheme of the problem. Dimensions in millimetres. 
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Reference liquid density 𝜌0 is 1000 kg ⋅ m−3.  There are 60 000 liquid particles, and 4 seconds are simulated. It 

was chosen 𝑡0 = 0 s and 𝑡𝑓 = 4 s. 

 

4. Results and Discussion 
The results are presented in the form of FTLE fields for a chosen set of time instances. FTLE+ is in Fig. 2, FTLE- 

3. Distinct features of the flow are further commented and marked in the figures. FTLE+ is not defined at 𝑡 = 𝑡𝑓 because 

it is not defined there and for a similar reason FTLE- is not defined for 𝑡 = 𝑡0. Note that the color scales are different 

for various times to visualize the fields correctly. This is due to the aperiodic nature of the analyzed field. Moreover, the 

results become meaningless close to the mentioned definition limits.  

In Fig. 2a there is the initial configuration. In both liquid columns there are distinct areas with low values of FTLE+. 

In the higher column approximately in the centre, and in the lower column in its bottom centre. These spots are parts of 

the liquid that stay together throughout the whole simulation. They move with the flow and get deformed but not mixed 

with liquid from other parts. No other structures are visible in this configuration. 

Fig. 2b and Fig. 3a depict the same time instance shortly after the waves hit one another. A massive jet of fluid is 

about to impact the fluid layer beneath on the right-hand side of the tank, while a rolling wave emerges at the position 

x=1.5 m and starts moving leftwards. In FTLE+, the two spots in the middle of each column are joined together and 

some ridges that will form future structures become apparent. There is a very distinct ridge in FTLE-. This ridge clearly 

separates the fluid from the two initial liquid columns. This structure remains dominant for the rest of the simulation. 

Fig. 2c and Fig. 3b capture a very violent situation after the jet hit the fluid layer on the right, and the impact of the 

rolling wave moving left resulted in a sequence of rolling waves and jets. In both pictures, two large counter-rotating 

structures resulting from the jet impact are visible. One in the bottom right corner of the tank (I) and the other one about 

0.7 m to the right (II). The most distinct structures in the left are two (counter-rotating again) eddies (III and IV). In 

FTLE+, there is a visible difference between the vortices. While the right one (III) is bounded by a ridge that separates 

it from the rest of the fluid, the left one (IV) forms an unrolling spiral. Worth noticing is also the boundary between fluid 

from different columns in FTLE-. Most of the liquid from the right column remains in the right and partially mixes with 

the other fluid. However, a thin layer near the bottom reached eddy III and it transports it further to the left. 

Fig. 2d and Fig. 3c depict a situation when a series of jets and rolling waves propagate from the left wall back to 

the right. The surface is relatively calm in the right part of the tank. A relatively large vortices I and II split into two 

smaller eddies (I to Ia and Ib, and II to IIa and IIb). These vortices are noticeable in both FTLE+ and FTLE- fields. The 

same applies for vortex III. However, vortex IV is no longer apparent in FTLE+ because its rotation stopped. In FTLE- 

we can see a stretching deformation of the material that formed eddy IV. There is another vortex in the bottom left corner 

of the tank (V) that emerged as a consequence of a wave impacting the left wall. The thin layer of liquid from the lower 

column commented in the previous paragraph evolved as it wound up further on eddy III.   

In Fig. 3d, we can see the fluid in the end of the simulation. The waves reached the right wall and the overall motion 

gets mitigated by the artificial viscosity. Towards the end of the simulation, we are limited to FTLE- field because of the 

lower information value of FTLE+ fields for 𝑡 and 𝑡𝑓 being too close values. Some structures highlighted in the previous 

paragraphs are still noticeable even though majority of the vortices ceased to exist. There are only parcels of fluid that 

once formed vortices. Probably the best example is vortex IV which got stretched into a very thin layer.  This process 

started also for vortex III. Eddies Ia and IIb are no longer visible at all. On the other hand, a new vortex (VI) appeared 

as a result of one of the rolling waves. Worth noticing are also the large areas of low FTLE- values in the middle of the 

tank. These are formed by the same liquid particles as the low FTLE- spots in Fig. 2a. The distinct ridge separating the 

bigger and the smaller parcel separates liquid from the higher and the lower column. Fluid in these areas changed its 

position and got deformed but did not mix with other fluid (as already mentioned in the second paragraph of this section) 
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Fig. 2: FTLE+ for chosen time instances. 
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Fig. 3: FTLE- for various time instances. 
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5. Conclusion 
The main goal of this work was to reach a better understanding of LCSs and the ways of their identification. Data from 

a SPH simulation of free surface flow were used for FTLE analysis, which can visualize LCSs. The advantage of using SPH 

data is that they are naturally Lagrangian.  The material approach analysis proved itself to be applicable and some 

characteristics of the flow were successfully identified. Many of the features of the flow, like the evolution of certain fluid 

parcels in time, would be impossible to find using only Eulerian flow field analysis tools.  

In the future, it would be interesting to analyse different types of flows and use other tools for flow field analysis to see 

their capabilities and limits. Some attention should be also focused on improving the computational efficiency of the 

implementation. 
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