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Abstract – Solution for the inertial incompressible flow along a right-angle corner in a fluid superposed porous layer is obtained based 

on single domain formulation. Generalized momentum equation which reduces to Navier-Stokes equation in pure fluid layer is employed 

to model the inertial flow behaviour in conjugate fluid-porous medium. The governing equations are solved using a second-order 

projection scheme on quadtree grid. We present flow characteristics for both constant and variable porosity layer for Re = 100. For a 

given reference Darcy number Da0 = 10−2 , it is observed that streamlines crowd near the corner and bottom wall for porous layer with 

uniform porosity (ε = 0.6) unlike for the case with porosity varying linearly across the layer (ε = 0.2-1.0). Furthermore, the velocity field 

is seen exhibiting similarity behaviour for both constant and variable porosity layers. In the absence of any exact solutions for non-linear 

inertial porous flows, the existence of similarity solution in case of corner flows in a fluid overlying porous layer serves as a reliable 

theoretical tool to verify the numerical scheme for solving the conservation equations describing inertial flows through heterogeneous 

porous media. 
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1. Introduction 
Corner flows in a fluid superposed porous medium find several applications in industrial and natural processes such as 

porous bearings, heat exchangers, alloy solidification, nuclear reactors etc. In these applications, fluid flow ranges from 

creeping to inertial regime and the properties of the porous medium might vary spatially. In creeping flow regime, Bars and 

Worster [1] reported similarity solution of Darcy-Brinkmann equation analytically and numerically for corner flow in a fluid 

overlying porous layer with constant and variable porosity respectively. However, to our knowledge, no solutions are 

available in the literature to corner flow problems with inertial effects in fluid overlying porous media.  

In this paper, we present numerical solution for the inertial corner flow in a fluid superposed porous layer, both with a 

constant porosity and with a linear porosity variation in transverse direction. The solutions for both the cases are compared 

to assess the effect of porosity variation on flow field in the corner geometry. Also, the velocity profiles across the fluid-

porous layer are analysed for different longitudinal positions. Here, based on single domain formulation, fluid flow in the 

composite system is modelled by generalized momentum equation. The partial differential equations are solved with second 

order accuracy.  

 

2. Equations and Method of Solution  
As shown in Figure 1, we compute velocity field 𝐮(x, y) in a two-dimensional rectangular domain (0, 10) × (0, 1) with 

porous medium present in (0, 10) × (0, 0.5). Adopting single-domain approach, flow in the entire domain is captured by 

generalized porous flow model. Therefore, the non-dimensional continuity and momentum equations are given as [2, 3] 

 

∇ ∙ 𝐮 =  0 (1) 
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where ε, Da0, Re, and 𝐒 are porosity, reference Darcy number, Reynold number, and non-dimensionalized deformation 

tensor. In (2), the last two terms are referred to as viscous and inertial drags caused by the porous medium. The dimensionless  
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parameter Da0 is defined as Da0 =
D2

150
;  where D is dimensionless pore diameter. 

 
Fig. 1: Computational domain for corner flow in a fluid superposed porous medium.  

 

The boundary conditions are written as  

𝑢 =  0,          𝑣 = −1            at  y = 1; 
                                                            𝑢 =  10,        𝑣 = 0               at  x = 10;   
                                                            𝑢 =  0,           ∇𝑥𝑣 = 0          at  x = 0;   
                                                            ∇𝑦𝑢 =  0,       𝑣 = 0              at  y = 0;                                                        

 

 

 

(3) 

        We solve the set of equations (1) - (2) with boundary conditions (3) using projection algorithm proposed by Bell et al. 

[4] on cell-centred quadtree grid in finite volume framework. To obtain face-centred velocity field, the scheme employs 

Godunov type procedure which doesn’t pose any cell Reynold number stability criterion, thereby providing a robust 

discretization for inertial flows. Making use of limiter in slope computations prevents the scheme from producing spurious 

oscillations in presence of discontinuity in porosity field. Moreover, balanced-force scheme is applied to ensure exact 

(discrete) equilibrium between pressure gradient and viscous as well as inertial drags. The system of algebraic equations is 

solved by multi-grid accelerated Gauss-Seidel method. Taking zero velocity field as the initial condition, we march in time 

until the solution reaches steady state defined as ||𝑢𝑗
𝑛+1 −  𝑢𝑗

𝑛||𝐿1
<  10−7; where n is the time level, j is the cell index, and 

||. ||𝐿1
 denotes first norm in L-space. For the quantitative validation of the numerical scheme for fluid superposed porous 

media, we compare our result for Couette flow without non-linear inertial drag against the analytical solution of Martys et 

al. [5] in Figure 2. The comparison shows excellent agreement between the numerical and analytical solutions. 

 

 
Fig. 2: Comparison of u-velocity profile against analytical solution of Martys et al. [5] for Couette flow with ε = 0.5 and Da0 = 10−2.   

 

3. Results and Discussion 
In this section, we present simulation results for porous layer with porosity ε = 0.6 and ε = 0.2 + 1.6y for Re = 100 and Da0 =    

10-2. Computational domain, shown in Figure 1, is discretized using grid size 2-6/2-8 with finer resolution near the interface. 
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The time step is taken as 10−5. The streamline patterns obtained for both constant and variable porosity cases are shown in 

Figure 3. As it is seen, streamlines crowd near the corner and bottom boundary in case of constant porosity layer while they 

drift away for variable porosity layer. This happens because the resistance to flow vary significantly across the layer in case 

                      
Fig. 3: Streamline pattern in a section of computational domain for: Left) constant porosity layer; and Right) variable porosity layer. 

The line in red represents the interface between fluid and porous layers. 

                        
Fig. 4: u-velocity profiles with x for: Left) constant porosity layer; and Right) variable porosity layer. 

                       
Fig. 5: Scaled u-velocity profiles with x for: Left) constant porosity layer; and Right) variable porosity layer.   
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of variable characteristics and fluid with high inertia chooses path that offers lesser drags. Because of this behaviour, evident 

from the change in gap between two successive streamlines, volume flow rate across the inhomogeneous porous layer also 

vary considerably. This is further illustrated by the u- and v-velocity profiles shown in Figures 4 - 6. 

  In Figure 4, change in u-velocity profiles with longitudinal positions are shown. It is evident that u-velocity and 

consequently volume flow rate across any transverse section increases with distance from the corner for both constant and 

variable porosity layers. This behaviour is desirable to ensure mass conservation. In Figure 5, scaled u-velocity profiles at 

different longitudinal positions collapse into a single curve except the one near the exit boundary. v-velocity profiles show 

the same trend as shown in Figure 6. Collapsing of all u- and v-velocity profiles (but the ones near the outlet) to the same 

curve suggests the existence of similarity solution in the form u = [x f(y), g(y)]. 

 

                          
Fig. 6: v-velocity profiles with x for: Left) constant porosity layer; and Right) variable porosity layer. 

 

4. Conclusion 
       We have presented solution for incompressible flow with inertial effects along a right-angle corner in a fluid overlying 

porous layer with constant and variable porosity. For a given reference Darcy number, the density of streamlines near the 

corner and bottom boundary is much higher in case of uniform porosity layer as compared to variable porosity scenario with 

mean value equal to porosity for homogeneous layer. Moreover, both u- and v-velocity fields show similar profile in 

longitudinal direction which can serve as a theoretical tool for the qualitative verification of solution methodology. Therefore, 

we believe that the similarity solutions presented in this paper could be used to validate the computer code simulating inertial 

flow in heterogeneous porous medium. 
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