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Abstract - We analyse the steady state vorticity distribution in a closed partially porous square domain upon creating a vortex sheet on 

the top boundary. Following one domain approach, the transport of vorticity in the coupled clear and porous media is governed by 

generalized porous flow model. Effect of Reynold number Re = {102, 103}, Darcy number Da = {10−2, 10−4} , and dimensionless thickness 

of porous layer H = {.01, .25, .50, .75} on the vorticity field are analysed. It is observed that a uniform vorticity region develops in the 

core of the domain at high Reynold and Darcy numbers Re = 103, Da = 10−2. With decrease in Darcy number to 10−4, region of uniform 

vorticity forms above the porous layer. As the thickness of porous layer increases, this region shifts towards the top-right corner. Also, 

vorticity with opposite sign are observed near the top boundary and interface between free fluid and porous medium. Furthermore, 

minimum vorticity along the top boundary decreases with Da, increases with Re, and decreases as H increases. 
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1. Introduction 
In closed domain, recirculating flows generated by imposing vortex sheet (in other words, uniform translation) on a 

section of the boundary are almost canonical flow problems and have been analysed extensively. For instance, Gatski et al. 

[1] presented evolution of vorticity and velocity field with time for Reynold number 400 in square as well as rectangular 

domain (aspect ratio 0.5) whose top boundary is suddenly applied with a sheet of infinite vorticity. They also pointed out 

that time required to reach steady state is proportional to Reynold number. Ghia et al. [2] showed vorticity distribution in a 

square domain for Reynold number in the range 102 to 104. Botella et al. [3] presented highly accurate benchmark solution 

for vorticity, pressure and velocity field in a square domain for Reynold number 103. Sahin et al. [4] showed the vorticity 

distribution in a square domain for Reynold number 0 to 104. They also showed the evolution of flow structure with time. 

Erturk et al. [5] demonstrated the effect of Reynold number 103 to 21×103 on vorticity at the centre of primary vortex. Cheng 

et al. [6] investigated vortex structure and vorticity distribution in rectangular domain for Reynold number 10−2 to 5×103 and 

aspect ratio 0.1 to 7. Patil et al. [7] analysed stream function and vorticity contours in a deep domain for Reynold number 50 

to 3200 and aspect ratio 1.5 to 4. Nevertheless, in several technological applications, the domain may be partially occupied 

with porous medium. To the best of author’s knowledge, no study has been carried out on internal recirculation with vorticity 

distribution in partially porous domain with closed boundary.  

In this paper, we analyse the vorticity field in a closed square domain with porous layer placed on the bottom boundary. 

Vortices in the domain is maintained by applying uniform translation condition on the top boundary. Reynold number, Darcy 

number, and dimensionless thickness of porous layer are the key parameters in this analysis. Taking one-domain approach, 

vorticity transport in the coupled clear and porous media is modelled by velocity-vorticity formulation based on the 

generalized porous flow equation. 

 

2. Mathematical Model  
As shown in Figure 1, we analyse vorticity field ω (x, y) in a unit square domain with porous medium present in (0, 1) 

× (0, H). The recirculation in the domain is sustained by the uniform and constant tangential velocity applied on the top 

section of the boundary. Following one-domain approach, fluid motion in the entire domain is described in terms of 

dimensionless velocity 𝐯 = (𝑢, 𝑣) and vorticity ω by generalized momentum equation [8, 9] in the form 
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Fig. 1: Schematic of closed partially porous square domain with uniform translation of top boundary. 
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(3) 

where Re, φ∗, and 𝐷𝑎∗ are Reynold number, porosity field and Darcy number field. 

   It is evident that the system of equations (1) - (3) reduces to velocity and vorticity formulation by Navier-Stokes 

equation for φ∗ → 1 and  𝐷𝑎∗ → ∞. Here, the sharp interface at y = H is replaced with a thin transition layer across which 

the porosity and Darcy number vary continuously. For a given porosity φ and Darcy number 𝐷𝑎 of the porous medium, in 

the domain, porosity and Darcy number fields are modelled as  

                                       
Fig. 2: Comparison of vorticity profile along the midlines y = 0.5 and x = 0.5 with those of Botella et al. [3] for Re = 103, and H = .001. 
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a) Re = 102, Da = 10−2, and H = .01 

 

b) Re = 102, Da = 10−2, and H = 0.25 

 

c) Re = 103, Da = 10−2, and H = 0.25 

 

d) Re = 103, Da = 10−4, and H = 0.25 

 

e) Re = 103, Da = 10−4, and H = 0.50 

 

f) Re = 103, Da = 10−4 and H = 0.75 

 

Fig. 3: Change in vorticity contours with Re, Da, and H. 
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φ∗(x, y)  =  
1 + φe−θ(𝑦−𝐻)

1 + e−θ(𝑦−𝐻)
 (4) 

𝐷𝑎∗(x, y) =   
φ∗3(1 − φ)2𝐷𝑎

φ3(1 − φ∗)2
  (5) 

 

where θ is an arbitrary parameter. As φ∗ and 𝐷𝑎∗ undergo rapid changes in the transition region, the governing equations 

are discretized on quadtree grid to facilitate the extra resolution near the interface efficiently. To obtain the steady state 

vorticity field, taking stationary flow field as initial condition, we iterate in time until the first norm of the difference in 

vorticity field at two successive time level goes below 10−7. In order to verify the computer code, in Figure 2, we compare 

the vorticity profile along the straight lines passing through the geometric centre of the domain for Re = 103 and H = .001 

against the benchmark solutions available in the literature. The present results are found to be in very good agreement with 

the numerical solutions of Botella et al. [3]. 

 

3. Results and Discussion  
      We present simulation results for Re = {102, 103}, Da = {10−2, 10−4}, and dimensionless thickness of porous layer H = 

{.01, .25, .50, .75}. The porosity is held constant at φ = 0.7. The domain (Figure 1) is discretized using hybrid grid with extra 

resolution near the interface y = H. The demand for finer grid near the interface increases as Darcy number decreases. To 

perform all these simulations, grid size and time step are varied in the range [2-6, 2-9] and [10-3, 10-5] respectively. The value 

of θ, associated with equation (4), is taken as 300. 

       In Figures 3a - 3f, we show vorticity field in the steady state for different Re, Da and H. We also plot the corresponding 

vorticity distribution along the top boundary in Figure 4. For low Reynold number (𝑅𝑒 = 102), introduction of porous 

medium with high permeability (𝐷𝑎 = 10−2) and small thickness  (H = 0.25) in the lower region increases the vorticity in 

the upper section of the domain slightly. However, this effect doesn’t propagate upto the top side and vorticity remains almost 

unchanged along the top boundary. Increase in Reynold number (𝑅𝑒 = 103 ←  102) changes the vorticity distribution in the 

domain significantly. A uniform vorticity region in the central part of the domain and multiple regions of high vorticity 

gradients near the boundary are developed (Figure 3c). Vorticity distribution along the top boundary also changes 

substantially. As the resistance of the porous medium increases i.e. Darcy number decreases (𝐷𝑎 = 10−4 ←  10−2), vorticity 

in the porous layer approaches to zero and region of high vorticity gradient appears near the interface as well (Figure 3d). 

Magnitude of vorticity reduces slightly in the second half of top boundary (x >  0.5). With increase in thickness of porous 

layer (H = 0.5 ←  0.25), boundary layer associated with the interface shifts accordingly. Also, the region of uniform 

vorticity shrinks in size and moves towards the right corner (Figure 3e). The trend continues with further increase in thickness           

 

 
Fig. 4: Change in vorticity along the top boundary with Re, Da and H. 
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of porous layer (H = 0.75 ←  0.5) as evident by the high density of the vorticity contours between the interface and region 

of uniform vorticity in Figure 3f. For Da = 10−4 and H = {0.5, 0.75}, as shown in Figure 4, profile of |ω| along the top 

boundary shows local maxima and minima in the right half section of the boundary. The minima decreases and its location 

shifts towards the right corner with increase in H. 

 
4. Conclusion 
We have analysed the steady-state distribution of vorticity for different Reynold number, Darcy number, and thickness of 

porous layer in a closed square domain partially filled with porous medium. Upon placing a sheet of infinite vorticity on the 

top boundary, the vorticity diffuses and advects in the domain. Adopting one-domain approach, the transport of vorticity in 

the entire domain is modelled by velocity-vorticity formulation of generalized porous flow model. It is observed that increase 

in Re from 102 to 103 leads to formation of uniform vorticity region in the centre of the domain. With reduction in Da from 

10−2 to 10−4, vorticity in the porous layer becomes negligible and steep change in vorticity occurs near the interface. For Da 

= 10−4, this region moves towards the top-right corner with increase in thickness of porous layer. The size of this region also 

decreases as thickness increases. Additionally, magnitude of vorticity (|ω|) along the top boundary increases significantly as 

Re changes from 102 to 103. With drop in Da to 10−4, |ω| decreases slightly in the downstream part of top boundary. For Da 

= 10−4, as thickness increases beyond 0.25, |ω| ceases to show parabolic kind of distribution along the top boundary. 

Moreover, the location of minimum |ω| continues to shift towards the right corner with increase in thickness of porous layer. 
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