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Abstract - This study investigates the use of Machine Learning models for predicting both wall temperature and heat flux at the Onset 

of Nucleate Boiling (ONB). The dataset used in this work was obtained from an experimental test bench using Joule heating for boiling 

generation. Furthermore, five models, including Artificial Neural Networks (ANN), XGBoost, Support Vector Regression, AdaBoost, 

and Random Forest, were trained and evaluated. Results reveal that AdaBoost performed the worst in both wall temperature and heat 

flux predictions, indicating limitations in its ability to accurately forecast the ONB parameters. Conversely, the Random Forest model 

showed signs of overfitting in both predictions, suggesting that it may struggle to generalize to unseen data. In contrast, ANN 

demonstrated superior performance in predicting wall temperature (with mean square errors of 3.79 °C² and 3.84 °C² for training and 

testing), while XGBoost outperformed other models in heat flux prediction. Both models successfully captured the complex relationships 

between inputs (bulk temperature, pressure, channel inclination and velocity) and ONB parameters, leading to accurate predictions. 
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1. Introduction 
The prediction of wall temperature and heat flux during boiling phenomena is a critical aspect in numerous engineering 

applications, such as in the design and operation of heat transfer systems like heat exchangers or water-cooled nuclear 

reactors [1–3]. This prediction is particularly significant at the Onset of Nucleate Boiling (ONB), which occurs when vapor 

bubbles start to form and grow on a heated surface, resulting in a complex heat transfer phenomenon that has been extensively 

studied but is still not fully understood [4–6]. These bubbles, as they initiate and expand, greatly enhance the heat transfer 

capabilities, effectively extracting heat from the surface [7]. Consequently, nucleate boiling is widely used in various 

engineering fields due to its high heat transfer coefficients [8], [9]. However, the presence of bubbles can also lead to 

undesirable effects, such as the formation of vapor film, bubble coalescence, or a significant decrease in heat transfer 

efficiency once the Critical Heat Flux (CHF) is reached [10], [11]. Therefore, accurately estimating boiling processes 

becomes crucial for optimizing heat transfer and enabling the efficient design and performance of thermal systems. 

Traditionally, researchers have proposed physics-based models and empirical correlations to predict the onset of nucleate 

boiling based on specific input conditions, often relying on experimental data. For instance, Hsu [12] conducted pioneering 

research on the conditions that enable nucleate boiling to occur, proposing a correlation that mainly considers the superheat 

and physical properties of the liquid. Qu and Mudawar [13] conducted experiments to measure the incipient boiling heat flux 

in micro-channel heat sinks and developed a model that considers both mechanical and thermal factors, including the force 

balance on the bubble, through a bubble departure criterion. Similarly, Liu et al. [14] formulated an analytical model based 

on experimental work to predict heat flux and bubble size at the ONB, incorporating various parameters such as fluid inlet 

conditions, subcooling, contact angle, microchannel dimensions, and fluid exit pressure. More recently, Lim et al. [15] 

explored the onset of nucleate boiling in a swirl tube using dimensional analysis, while Al-Yahia and Jo [16] investigated 

the influence of mass flux on nucleation site density, bubble departure, and heat flux, proposing a new correlation with an 

error of ±16.5%.  

However, in spite of the substantial contributions of previous research, and due to the complex nature of boiling 

phenomena, the accuracy of traditional correlations may decrease when faced with novel applications, geometries or 

operating conditions [17]. Thus, the study of boiling and the development of new models will remain of significant interest 

for the scientific community [18]. In fact, Machine Learning (ML) approaches have recently merged as promising tools for 

boiling prediction due to their capability to capture nonlinear relationships between input parameters and output target values, 
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thereby enhancing prediction accuracy. For example, Liu et al. [19] utilized data from numerical simulations to train a 

deep feed-forward neural network for predicting heat transfer in pool boiling. Alotaibi et al. [20] applied a decision tree 

algorithm for minimum film boiling temperature and, in another study, Cai [21] applied a support vector machine (SVM) 

to predict CHF in a concentric-tube open thermosiphon. These studies demonstrate the successful application of 

supervised learning algorithms for predicting boiling phenomena. However, a recent review conducted by Rashidi et al. 

[22] emphasizes the need for a more extensive investigation into the influence of different model architectures and inputs 

on the accuracy of predictions in boiling applications. Precisely, this work is framed within this scientific context. 

In fact, this study aims to explore the performance of machine learning algorithms, specifically Artificial Neural 

Networks (ANN), Random Forest (RF), XGBoost, AdaBoost, and Support Vector Regression (SVR), in predicting the 

onset of nucleate boiling. The data used to train these algorithms were obtained from an experimental setup consisting 

of a heated plate embedded in a rectangular channel with adjustable orientations. Hyperparameter tuning was performed 

to optimize these algorithms during training, and the Mean Square Error (MSE) was used as the evaluation metric to 

compare these approaches. 

 

2. Experimental setup and methodology 
The experimental setup depicted in Fig. 1(a) was used to obtain the data utilized for training the machine learning 

algorithms. This facility, extensively described in previous studies [23], [24], comprises two clearly distinct parts: a 

study section outlined by a dashed line in Fig. 1(a), and additional subsystems that enable the proper adjustment and 

measurement of bulk temperature, pressure, and volumetric flow rate. As shown in Fig. 1(a), the study section consists 

of a rectangular channel with effective dimensions of 10 x 25 x 320 mm with adjustable inclination. The heated area 

within this channel has dimensions of 10 mm in width and 75 mm in length. In this specific study, heat flux on this area 

was generated by Joule heating of a 1 mm-thin stainless steel plate using two 10 kW high-intensity power supplies. 

Previous and detailed examples where this heating method was used for boiling purposes can be found in works 

performed by Jo et al. [25] and Kim and Bang [26], among other examples. 

 

Fig. 1: (a) Sketch of the experimental test bench; (b) Flowchart of the Machine learning training process. 

Specifically, 228 tests were conducted, varying inlet velocities (0.2–0.8 [m·s-1]), inlet temperatures (20–95 [°C]), 

pressures (130–220 [kPa]), and channel inclination (0°, 180°, 225°, and 270°). In all of them, a 50% ethylene glycol – 

water mixture was used as the working fluid. Specifically, each of this tests was performed increasing the electrical load 

to the heating surface in steps of 0.5 𝐴 until bubbles were clearly formed. According to Jo et al. [25], from electrical 

current (𝐼), voltage (𝑉) and the heating area (𝐴), heat flux (𝑞) was calculated via Eq. 1, while wall temperature was 

calculated using the measured electrical resistance and calibration charts of this specific test bench. Finally, from the 

resulting boiling curves of each test, the ONB was obtained as the inflection point where the slope of the boiling curve 

changes. 

𝑞 = 𝐼
𝑉

𝐴
 (1) 
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3. Machine learning models 
From the experimental tests outlined in section 2, a collection of input conditions is obtained along with the 

corresponding results of heat flux and wall temperature. This dataset enables the utilization of machine learning algorithms 

to autonomously uncover patterns on this data and subsequently make predictions based on this information. In this specific 

study, a comparative analysis is proposed, focusing on five different machine learning algorithms: Support Vector 

Regression, Artificial Neural Networks, Random Forest, AdaBoost, and XGBoost. The basis of each algorithm and its 

implementation are succinctly described below. 

 
3.1. Overview of algorithms 

All the algorithms employed in this work are under the domain of supervised learning, which involves using labeled 

training data to build predictive models. In this context, the algorithms are provided with input-output pairs, allowing them 

to identify underlying patterns within the data. One of the algorithms considered in this study are the Artificial Neural 

Networks. ANNs are composed of interconnected artificial neurons, which reproduce the behavior of biological neurons. 

Furthermore, by employing a layered structure and activation functions, ANNs are able to learn from input features through 

non-linear transformations [27]. Specifically, these algorithms employ a process known as backpropagation to iteratively 

adjust the connection weights between neurons [28]. This adjustment is based on the comparison between the predicted 

output and target values. By minimizing a suitable loss function, often using the MSE, ANNs aim to optimize their predictive 

performance. Furthermore, the addition of penalty terms proportional to the square of the network weights is also common 

for ANNs [29]. By adding these terms (a process known as regularization “L2”), smaller weights are promoted during 

training, which helps to prevent single weights from dominating the learning process. 

Regarding the AdaBoost model, it is an ensemble learning technique that combines weak models to construct a more 

robust one [30]. In regression tasks, it trains these weaker models iteratively, giving more importance to complex cases by 

adjusting their sample weights. The ensemble prediction is determined by considering the weighted contributions of these 

individual, weaker learners. In fact, its main objective is to reduce prediction errors by minimizing a loss function, usually 

defined using exponential, linear, or square functions, which measures the disparities between the ensemble model's 

predictions and the actual labeled values. Therefore, the key idea of this supervised learning algorithm is to sequentially train 

a series of weak learners on weighted versions of the training data. 

Similarly, the Random Forest algorithm also utilizes weak learners. However, in RF, multiple decision trees are built 

independently using bootstrapped samples from the training data [31]. Each tree is constructed using a random subset of 

features, where this randomness tends to enhance the model's generalization ability [32]. The final prediction from the 

Random Forest is obtained by aggregating the results given by all decision trees, commonly by means of the average value. 

Therefore, in the RF approach, decision trees are constructed independently, but they collectively contribute to the final 

prediction through aggregation. Additionally, the XGBoost algorithm extends the boosting framework of AdaBoost and the 

ensemble construction of Random Forest to achieve a better performance. Specifically, XGBoost incorporates a shrinkage 

parameter that scales the contribution of each learner in the ensemble and minimizes the loss function using gradient-based 

optimization [33]. 

Finally, the SVR algorithm is based on the principles of support vector machines and involves solving a mathematical 

optimization problem to find the optimal hyperplane that maximizes the margin while minimizing the error between predicted 

and target values. Specifically, given a training set 𝑥, SVR aims to find a regression function 𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏 , where 

𝑤 is the weight vector and 𝜑(𝑥) is the feature mapping using a given kernel function [34]. The SVR optimization problem 

can be formulated by means of the minimization of the cost function given by Eq. 2. 

 

𝐽 =  
‖𝑤‖2

2
+ 𝐶 ∑|𝜀𝑘|

𝑛

𝑖=1

 (2) 

 

Where, 𝑛 denotes the number of independent variables, 𝐶 is a trade-off hyperparameter to adjust regularization between 

margin size and the amount of error allowed within that margin, and 𝜀𝑘 denotes the slack margin variables – tolerances for 

data points to fall within a certain distance from the hyperplane –. 
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3.2. Implementation 

The algorithms mentioned in section 3.1 were trained using Python 3.9.13 and the Keras module. Fig. 1(b) illustrates 

the schematic of the process, which begins with data preprocessing. In this step, the input data was standardized, 

transforming the distributions to have a mean of zero and a standard deviation of one [35]. This process ensures that all 

features are on a comparable scale, avoiding any particular feature from overpowering the model due to its larger values. 

After the preprocessing stage, the dataset was partitioned into two parts: 80% for training and 20% for testing. Then, 

to ensure the robustness of the training stage, cross-validation with 5 folds was applied. This approach involves dividing 

the training data into multiple subsets or folds (5 in this specific work). Consequently, the model underwent training and 

evaluation five times, with each fold serving as the validation set once, while the remaining folds were utilized for 

training [36]. This approach tends to enhance the ability of the final model to generalize to unseen data [37]. 

In addition to cross-validation, the Search Grid method was also employed. This approach is a commonly used 

technique for hyperparameter tuning, which involves selecting the optimal combination of parameters that controls the 

model [38]. It systematically explores different hyperparameter values by defining a grid of possible combinations. By 

evaluating the performance of the model using those different parameters, it is possibly to identify the optimal set that 

yields the best performance [36]. The specific hyperparameters considered in this work are presented in Table 1, for 

each of the ML algorithms evaluated.  

 
Table 1. Hyperparameters considered during training. 

Artificial Neural Network Support Vector Regressor 

Hyperparameter Values Hyperparameter Values 

Activation Function ReLu Kernel function [“sigmoid”, “rbf”, “linear”] 

Number of hidden layers 2 Kernel coefficient [0.01, 0.05, 0.1, 0.5, 1] 

Neurons in the first hidden layer [25,35,45,50,55,75,100,125,150] 𝐶 [0.1, 1, 10] 

Neurons in the second hidden layer [5,15,20,25,30,35]   

Optimizer Adaptive Moment Estimation   

Kernel Regularizer “L2”   

Batch size [4, 8, 12]   

 

AdaBoost XGBoost 

Hyperparameter Values Hyperparameter Values 

Number of weak 

estimators 

[10,20,50,75,100,120,125,130, 

150,175,200,225,250,275] 
Number of weak estimators 

[10,20,50,75,100,120,125,130, 

150,175,200,225,250,275] 

Learning rate [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5] 
Maximum depth of the 

weak estimator 
[1,4,8,12,24,32] 

Loss function [“exponential”, “square”, “linear”] Learning rate 
[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 

1, 1.5] 

 

Random Forest 

Hyperparameter Values 

Number of weak estimators [10,25,50,150,175,200,225,250,275,300] 

Max features [“sqrt”,”log2”] 

 

Furthermore, during the final test phase, MSE was used as the metric to evaluate the final model's performance with 

unseen data. In this sense, MSE is a widely used metric for regression problems, representing the mean squared 

difference between the predicted values and the target values. By squaring the differences, this metric mainly emphasizes 

the larger errors. 

        

4. Results and discussion 
Table 2 showcases the MSE values for training and testing of each algorithm discussed in section 3, along with the 

corresponding best hyperparameters identified during training. These results correspond to the predictions made for wall 

temperatures using both the training and testing datasets, as outlined in Fig. 1(b) of the methodology section. 
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Table 2: Best hyperparameters obtained using Search Grid method. 

Algorithm Hyperparameters 
MSE [°C2] 

Training 

MSE [°C2] 

Testing 

ANN 
Neurons in the first hidden layer: 50 

Neurons in the second hidden layer: 25 

Batch size: 8 
3.79 3.84 

RF 
Number of weak estimators: 175 

Max features: sqrt 
1.92 5.86 

SVR 
Kernel function: rbf 

Kernel coefficient: 0.01 

C: 10 
4.19 4.26 

AdaBoost 
Number of weak estimators: 130 

Learning rate: 1.5 

Loss function: linear 
5.74 9.34 

XGBoost 
Number of weak estimators: 50 

Maximum depth of the weak estimator: 1 

Learning rate: 0.5 
4.65 5.91 

 

As observed from Table 2, the Random Forest model achieved the lowest training MSE value (1.92 °C2). However, 

there is a notable discrepancy between the training and testing MSE results, indicating a higher risk of overfitting. This 

suggests that the model may have overly adjusted to the training data, affecting its performance when encountering unfamiliar 

data. On the other hand, the ANN model demonstrated comparable performance between training and testing, with MSE 

values of 3.79 °C2 and 3.84 °C2, respectively. This similarity implies that the ANN model exhibits better generalization 

ability compared to the Random Forest model. 

The AdaBoost algorithm yielded the worst performance, with MSE values of 5.74 °C2 for training and 9.34 °C2 for 

testing. These results suggest that the model struggled to effectively fit the training data, resulting in poorer generalization 

compared to the ANN model when applied to the testing set. The higher testing MSE also indicates potential overfitting. In 

contrast, the SVR and XGBoost algorithms showed consistent MSE values between both datasets. However, these results 

were higher than those obtained for the ANN model, suggesting a lesser ability to generalize to unseen cases. Furthermore, 

in order to visually depict the performance of those five models, Fig. 2 shows the relation between predicted values and 

experimental results for the testing dataset. 

 

Fig. 2: Comparison between experimental data and Machine Learning predictions regarding wall temperatures. 
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Specifically, the x-axis represents the experimental data, while the y-axis represents the corresponding predicted 

values. The diagonal black lines observed in those panels represent the geometrical place where the predicted values 

perfectly match the experimental measurements, thus, resulting in null error. In all cases, as evidenced by the proximity 

of the predicted wall temperatures to the diagonal lines, the machine learning algorithms are able to effectively capture 

the underlying patterns of ONB points. In fact, all individual errors are in the same range, where the markers in the panel 

corresponding to the ANN graph cluster more clearly around the diagonal black line, which is coherent with the lower 

MSE shown in Table 2. 

Regarding heat flux results, Table 3 shows the training and testing errors, along with the corresponding best 

hyperparameters obtained during training. In this sense, the XGBoost algorithm demonstrates relatively low MSE values 

for both the training and testing datasets (0.54 x 10-3 [MW/m2]2 and 0.56 x 10-3 [MW/m2]2 respectively), indicating good 

performance and generalization ability. The similar values for both errors suggest that the model is not overfitting and 

could perform consistently on unseen data. On the other hand, the Random Forest algorithm achieves a significantly 

lower MSE on the training dataset compared to the testing dataset. This discrepancy, also found for wall temperature 

predictions, suggests potential overfitting, where the model may struggle to generalize to new data. In addition, the 

AdaBoost algorithm exhibits the higher MSE values, indicating a lesser prediction capability compared with the other 

methods. 

Table 3: Best hyperparameters obtained using Search Grid method. 

Algorithm Hyperparameters 
MSE [MW/m2]2 

Training 

MSE [MW/m2]2 

Testing 

ANN 
Neurons in the first hidden layer: 100 

Neurons in the second hidden layer: 5 

Batch size: 8 
0.31 x 10-3 0.61 x 10-3 

RF 
Number of weak estimators: 150 

Max features: log2 
0.16 x 10-3 0.85 x 10-3 

SVR 
Kernel function: rbf 

Kernel coefficient: 0.05 

C: 10 
0.31 x 10-3 0.74 x 10-3 

AdaBoost 
Number of weak estimators: 125 

Learning rate: 1.5 

Loss function: square 
0.87 x 10-3 0.89 x 10-3 

XGBoost 
Number of weak estimators: 75 

Maximum depth of the weak estimator: 4 

Learning rate: 0.1 
0.54 x 10-3 0.56 x 10-3 

 

Moreover, in order to visually illustrate the effectiveness of the five models in predicting heat flux, Fig. 3 presents 

the correlation between the predicted values and the experimental results for the testing dataset. It seems that the machine 

learning algorithms successfully capture the inherent patterns of the ONB points, as indicated by the close proximity of 

the predicted heat fluxes to the diagonal lines. Remarkably, all individual errors fall within a similar range. Notably, the 

markers in the XGBoost graph panel seem to exhibit a clearer clustering along the diagonal black line, also aligning 

with the lower MSE values depicted in Table 3. 
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Fig. 3: Comparison between experimental data and Machine Learning predictions regarding heat flux. 

4. Conclusion 
In this work, Machine Learning techniques were utilized to predict the wall temperature and heat flux associated with 

the onset of nucleate boiling. The training and testing data were obtained from an experimental setup where the channel 

inclination, flow velocity, pressure, and inlet temperature of the fluid were systematically modified. Furthermore, the boiling 

process was induced by the Joule effect.  

Five Machine Learning algorithms, including Artificial Neural Networks, Support Vector Regression, Random Forest, 

AdaBoost, and XGBoost, were evaluated to assess their performance. Specifically, in terms of wall temperature prediction, 

ANN was found as the most balanced method, with a training and testing Mean Squared Error of 3.79 °C2 and 3.84 °C2, 

respectively. On the other hand, Random Forest exhibited the largest disparity between training and testing, suggesting 

potential overfitting, while AdaBoost involves the worst performance. In fact, AdaBoost has also shown the worst MSE in 

predicting the heat flux, whereas XGBoost has demonstrated superior performance compared to ANN for that specific 

variable. Overall, these results demonstrate the effectiveness of these models in accurately forecasting the ONB, where future 

studies will focus on exploring in-depth the prediction of additional significant points along the boiling curve. 
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